-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathexample9_raytracer.cpp
255 lines (193 loc) · 8.21 KB
/
example9_raytracer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#define IMM2D_IMPLEMENTATION
#include "immediate2d.h"
#include <cmath>
//
// Example 9 - Ray tracing
//
// A raytracer that was originally jammed into 99 lines of C++
//
// NOTE: You may want to do the following to get much faster rendering:
// A. Set the "Debug" drop-down at the top of Visual Studio to "Release" mode
// B. Switch to "x64" in the drop-down next to that if your machine supports it
// C. Project properties --> C/C++ --> Language --> Open MP Support --> Yes
//
// Exercises:
// 1. Tinker with the number of samples per pixel (just below this comment block)
// 2. Tinker with the scene by changing the Spheres array on line 76 (different
// colors, reflection types, positions, etc.)
//
const int samples = 200;
//
// smallpt, a Path Tracer by Kevin Beason, 2008
// http://www.kevinbeason.com/smallpt/
//
// A good line-by-line description of how this works can be found here:
// https://docs.google.com/open?id=0B8g97JkuSSBwUENiWTJXeGtTOHFmSm51UC01YWtCZw
//
// Adapted to the Immediate2D framework (and expanded a bit to make things
// a little easier to read) by Nicholas Piegdon, 2017
//
struct Vec
{
// position, also color (r,g,b)
double x, y, z;
Vec(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) { }
Vec operator*(double b) const { return Vec(x*b, y*b, z*b); }
Vec operator+(const Vec &b) const { return Vec(x + b.x, y + b.y, z + b.z); }
Vec operator-(const Vec &b) const { return Vec(x - b.x, y - b.y, z - b.z); }
Vec operator%(const Vec &b) const { return Vec(y*b.z - z*b.y, z*b.x - x*b.z, x*b.y - y*b.x); }
Vec mult(const Vec &b) const { return Vec(x*b.x, y*b.y, z*b.z); }
Vec& norm() { return *this = *this * (1 / sqrt(x*x + y*y + z*z)); }
double dot(const Vec &b) const { return x*b.x + y*b.y + z*b.z; }
};
struct Ray { Vec o, d; };
// material types, used in radiance()
enum Refl_t { DIFF, SPEC, REFR };
struct Sphere
{
double rad; // radius
Vec p, e, c; // position, emission, color
Refl_t refl; // reflection type (DIFFuse, SPECular, REFRactive)
Sphere(double rad, Vec p, Vec e, Vec c, Refl_t refl) : rad(rad), p(p), e(e), c(c), refl(refl) { }
// returns distance, 0 if nohit
double intersect(const Ray &r) const
{
// Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
Vec op = p - r.o;
double t, eps = 1e-4, b = op.dot(r.d), det = b*b - op.dot(op) + rad*rad;
if (det < 0) return 0;
det = sqrt(det);
return (t = b - det) > eps ? t : ((t = b + det) > eps ? t : 0);
}
};
Sphere spheres[] =
{
// Left, right, back, and front walls
Sphere(1e5, Vec(1e5 + 1,40.8,81.6), Vec(),Vec(.75,.25,.25), DIFF),
Sphere(1e5, Vec(-1e5 + 99,40.8,81.6),Vec(),Vec(.25,0.6,.15), DIFF),
Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75), DIFF),
Sphere(1e5, Vec(50,40.8,-1e5 + 170), Vec(),Vec(), DIFF),
// Floor and ceiling
Sphere(1e5, Vec(50, 1e5, 81.6), Vec(),Vec(.75,.75,.75), DIFF),
Sphere(1e5, Vec(50,-1e5 + 81.6,81.6),Vec(),Vec(.75,.75,.75), DIFF),
// Mirror and glass spheres
Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(.3,.3,1)*.9, SPEC),
Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1,1,1)*.9, REFR),
// Ceiling light
Sphere(600, Vec(50,681.6 - .27,81.6),Vec(12,12,12), Vec(), DIFF)
};
inline double clamp(double x) { return x < 0 ? 0 : x>1 ? 1 : x; }
inline int gamma(double x) { return int(pow(clamp(x), 1 / 2.2) * 255 + .5); }
inline bool intersect(const Ray &r, double &t, int &id)
{
double n = sizeof(spheres) / sizeof(Sphere), d, inf = t = 1e20;
for (int i = int(n); i--;) if ((d = spheres[i].intersect(r)) && d < t) { t = d; id = i; }
return t < inf;
}
Vec radiance(const Ray &r, int depth)
{
// distance and id of intersected object
double t;
int id = 0;
// if miss, return black
if (!intersect(r, t, id)) return Vec();
// the hit object
const Sphere &obj = spheres[id];
Vec x = r.o + r.d*t, n = (x - obj.p).norm(), nl = n.dot(r.d) < 0 ? n : n*-1, f = obj.c;
// max refl
double p = f.x > f.y && f.x > f.z ? f.x : f.y > f.z ? f.y : f.z;
// R.R.
if (++depth > 5)
{
if (RandomDouble() < p) f = f*(1 / p);
else return obj.e;
}
// Ideal DIFFUSE reflection
if (obj.refl == DIFF)
{
double r1 = Tau * RandomDouble();
double r2 = RandomDouble();
double r2s = sqrt(r2);
Vec w = nl, u = ((fabs(w.x) > .1 ? Vec(0, 1) : Vec(1)) % w).norm(), v = w%u;
Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1 - r2)).norm();
return obj.e + f.mult(radiance(Ray{ x, d }, depth));
}
// Ideal SPECULAR reflection
if (obj.refl == SPEC) return obj.e + f.mult(radiance(Ray{ x, r.d - n * 2 * n.dot(r.d) }, depth));
// Ideal dielectric REFRACTION
Ray reflRay{ x, r.d - n * 2 * n.dot(r.d) };
// Ray from outside going in?
bool into = n.dot(nl) > 0;
double nc = 1, nt = 1.5, nnt = into ? nc / nt : nt / nc;
double ddn = r.d.dot(nl);
double cos2t = 1 - nnt*nnt*(1 - ddn*ddn);
// Total internal reflection
if (cos2t < 0) return obj.e + f.mult(radiance(reflRay, depth));
Vec tdir = (r.d*nnt - n*((into ? 1 : -1)*(ddn*nnt + sqrt(cos2t)))).norm();
double a = nt - nc, b = nt + nc, R0 = a*a / (b*b), c = 1 - (into ? -ddn : tdir.dot(n));
double Re = R0 + (1 - R0)*c*c*c*c*c, Tr = 1 - Re, P = .25 + .5*Re, RP = Re / P, TP = Tr / (1 - P);
// Russian roulette
return obj.e + f.mult(depth > 2 ? (RandomDouble() < P ?
radiance(reflRay, depth)*RP : radiance(Ray{ x, tdir }, depth)*TP) :
radiance(reflRay, depth)*Re + radiance(Ray{ x, tdir }, depth)*Tr);
}
void run()
{
UseDoubleBuffering(true);
Ray cam{ Vec(50, 50, 295.6), Vec(0, -0.04, -1).norm() }; // cam pos, dir
Vec cx = Vec(Width*.5135 / Height);
Vec cy = (cx % cam.d).norm()*.5135;
for (int y = 0; y < Height; y++)
{
// Enable OpenMP in your Visual Studio project options to run this loop in parallel
#pragma omp parallel for schedule(dynamic, 1)
for (int x = 0; x < Width; x++)
{
Vec c;
// 2x2 subpixel rows
for (int sy = 0, i = y*Width + x; sy < 2; sy++)
{
// 2x2 subpixel cols
for (int sx = 0; sx < 2; sx++)
{
Vec r{};
for (int s = 0; s < samples; s++)
{
const double r1 = 2 * RandomDouble();
const double dx = r1 < 1 ? sqrt(r1) - 1 : 1 - sqrt(2 - r1);
const double r2 = 2 * RandomDouble();
const double dy = r2 < 1 ? sqrt(r2) - 1 : 1 - sqrt(2 - r2);
Vec d = cx*(((sx + .5 + dx) / 2 + x) / Width - .5) + cy*(((sy + .5 + dy) / 2 + y) / Height - .5) + cam.d;
r = r + radiance(Ray{ cam.o + d * 140, d.norm() }, 0)*(1. / samples);
}
c = c + Vec(clamp(r.x), clamp(r.y), clamp(r.z))*.25;
}
}
DrawPixel(x, Height - y - 1, MakeColor(gamma(c.x), gamma(c.y), gamma(c.z)));
}
Present();
}
SaveImage();
}
//
// Copyright (c) 2006-2008 Kevin Beason (kevin.beason@gmail.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//