-
Notifications
You must be signed in to change notification settings - Fork 2
/
svm-train.c
322 lines (295 loc) · 7.19 KB
/
svm-train.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "svm.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
void exit_with_help()
{
printf(
"Usage: svm-train [options] training_set_file [model_file]\n"
"options:\n"
"-s svm_type : set type of SVM (default 0)\n"
" 0 -- C-SVC\n"
" 1 -- nu-SVC\n"
" 2 -- one-class SVM\n"
" 3 -- epsilon-SVR\n"
" 4 -- nu-SVR\n"
"-t kernel_type : set type of kernel function (default 2)\n"
" 0 -- linear: u'*v\n"
" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
" 4 -- precomputed kernel (kernel values in training_set_file)\n"
"-d degree : set degree in kernel function (default 3)\n"
"-g gamma : set gamma in kernel function (default 1/k)\n"
"-r coef0 : set coef0 in kernel function (default 0)\n"
"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
"-m cachesize : set cache memory size in MB (default 100)\n"
"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
"-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
"-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
"-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
"-v n: n-fold cross validation mode\n"
);
exit(1);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
void read_problem(const char *filename);
void do_cross_validation();
struct svm_parameter param; // set by parse_command_line
struct svm_problem prob; // set by read_problem
struct svm_model *model;
struct svm_node *x_space;
int cross_validation;
int nr_fold;
int main(int argc, char **argv)
{
char input_file_name[1024];
char model_file_name[1024];
const char *error_msg;
parse_command_line(argc, argv, input_file_name, model_file_name);
read_problem(input_file_name);
error_msg = svm_check_parameter(&prob,¶m);
if(error_msg)
{
fprintf(stderr,"Error: %s\n",error_msg);
exit(1);
}
if(cross_validation)
{
do_cross_validation();
}
else
{
model = svm_train(&prob,¶m);
svm_save_model(model_file_name,model);
svm_destroy_model(model);
}
svm_destroy_param(¶m);
free(prob.y);
free(prob.x);
free(x_space);
return 0;
}
void do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double,prob.l);
svm_cross_validation(&prob,¶m,nr_fold,target);
if(param.svm_type == EPSILON_SVR ||
param.svm_type == NU_SVR)
{
for(i=0;i<prob.l;i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
printf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
);
}
else
{
for(i=0;i<prob.l;i++)
if(target[i] == prob.y[i])
++total_correct;
printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
}
free(target);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
{
int i;
// default values
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0; // 1/k
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 100;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.probability = 0;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
cross_validation = 0;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
if(++i>=argc)
exit_with_help();
switch(argv[i-1][1])
{
case 's':
param.svm_type = atoi(argv[i]);
break;
case 't':
param.kernel_type = atoi(argv[i]);
break;
case 'd':
param.degree = atoi(argv[i]);
break;
case 'g':
param.gamma = atof(argv[i]);
break;
case 'r':
param.coef0 = atof(argv[i]);
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'm':
param.cache_size = atof(argv[i]);
break;
case 'c':
param.C = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'p':
param.p = atof(argv[i]);
break;
case 'h':
param.shrinking = atoi(argv[i]);
break;
case 'b':
param.probability = atoi(argv[i]);
break;
case 'v':
cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
fprintf(stderr,"n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
default:
fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
}
}
// determine filenames
if(i>=argc)
exit_with_help();
strcpy(input_file_name, argv[i]);
if(i<argc-1)
strcpy(model_file_name,argv[i+1]);
else
{
char *p = strrchr(argv[i],'/');
if(p==NULL)
p = argv[i];
else
++p;
sprintf(model_file_name,"%s.model",p);
}
}
// read in a problem (in svmlight format)
void read_problem(const char *filename)
{
int elements, max_index, i, j;
FILE *fp = fopen(filename,"r");
if(fp == NULL)
{
fprintf(stderr,"can't open input file %s\n",filename);
exit(1);
}
prob.l = 0;
elements = 0;
while(1)
{
int c = fgetc(fp);
switch(c)
{
case '\n':
++prob.l;
// fall through,
// count the '-1' element
case ':':
++elements;
break;
case EOF:
goto out;
default:
;
}
}
out:
rewind(fp);
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct svm_node *,prob.l);
x_space = Malloc(struct svm_node,elements);
max_index = 0;
j=0;
for(i=0;i<prob.l;i++)
{
double label;
prob.x[i] = &x_space[j];
fscanf(fp,"%lf",&label);
prob.y[i] = label;
while(1)
{
int c;
do {
c = getc(fp);
if(c=='\n') goto out2;
} while(isspace(c));
ungetc(c,fp);
if (fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)) < 2)
{
fprintf(stderr,"Wrong input format at line %d\n", i+1);
exit(1);
}
++j;
}
out2:
if(j>=1 && x_space[j-1].index > max_index)
max_index = x_space[j-1].index;
x_space[j++].index = -1;
}
if(param.gamma == 0)
param.gamma = 1.0/max_index;
if(param.kernel_type == PRECOMPUTED)
for(i=0;i<prob.l;i++)
{
if (prob.x[i][0].index != 0)
{
fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n");
exit(1);
}
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
{
fprintf(stderr,"Wrong input format: sample_serial_number out of range\n");
exit(1);
}
}
fclose(fp);
}