forked from feifeibear/LLMSpeculativeSampling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
133 lines (104 loc) · 6.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import argparse
import contexttimer
from colorama import Fore, Style
from transformers import AutoTokenizer, AutoModelForCausalLM
from sampling import autoregressive_sampling, speculative_sampling, speculative_sampling_v2
from globals import Decoder
# my local models
MODELZOO = {
# llama-1
# https://huggingface.co/PY007/TinyLlama-1.1B-step-50K-105b
"llama1b": "/share_nfs/fangjiarui/root/code/hf_models/TinyLlama-1.1B-step-50K-105b",
"llama7b": "/share_nfs/tianzhi/code/llama-7b",
"llama30b": "/share_nfs/fangjiarui/root/code/hf_models/llama-30b-hf",
"llama2-7b" : "/share_nfs/fangjiarui/root/code/hf_models/llama-2-7b-hf",
"llama2-70b" : "/share_nfs/fangjiarui/root/code/hf_models/llama-2-70b-hf",
"bloom-560m": "/share_nfs/fangjiarui/root/code/hf_models/bloom-560m",
"bloom7b": "/share_nfs/fangjiarui/root/code/hf_models/bloomz-7b1",
"baichuan-7b": "/share_nfs/duanqiyuan/models/source_models/hf/baichuan-7B",
"baichuan-13b": "/share_nfs/duanqiyuan/models/source_models/hf/Baichuan-13B-Base",
}
def parse_arguments():
parser = argparse.ArgumentParser(description='args for main.py')
parser.add_argument('--input', type=str, default="Any recommendations for my holidays in Abu Dhabi?")
parser.add_argument('--approx_model_name', type=str, default=MODELZOO["llama2-7b"])
parser.add_argument('--target_model_name', type=str, default=MODELZOO["llama2-70b"])
parser.add_argument('--verbose', '-v', action='store_true', default=False, help='enable verbose mode')
parser.add_argument('--seed', '-s', type=int, default=None, help='set a random seed, which can makes the result reproducible')
parser.add_argument('--benchmark', '-b', action='store_true', default=False, help='show benchmark results.')
parser.add_argument('--profiling', '-p', action='store_true', default=False, help='collect torch profiler results.')
parser.add_argument('--max_tokens', '-M', type=int, default=20, help='max token number generated.')
parser.add_argument('--gamma', '-g', type=int, default=4, help='guess time.')
args = parser.parse_args()
return args
def color_print(text):
print(Fore.RED + text + Style.RESET_ALL)
def benchmark(fn, print_prefix, use_profiler=True, *args, **kwargs):
TEST_TIME = 10
profile_filename = f"./profile_logs/{print_prefix}"
with contexttimer.Timer() as t:
if use_profiler:
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(wait=0, warmup=1, active=2, repeat=1, skip_first=0),
on_trace_ready=torch.profiler.tensorboard_trace_handler(profile_filename),
record_shapes=False,
profile_memory=False,
# with_stack=True
) as prof:
for _ in range(TEST_TIME):
output = fn(*args, **kwargs)
prof.step()
else:
for _ in range(TEST_TIME):
output = fn(*args, **kwargs)
print(f"\n [benchmark] {print_prefix}, tokens/sec: {len(output[0]) / t.elapsed / TEST_TIME}, {t.elapsed / TEST_TIME} sec generates {len(output[0])} tokens")
def generate(input_text, approx_model_name, target_model_name, num_tokens=20, gamma = 4,
random_seed = None, verbose = False, use_benchmark = False, use_profiling = False):
# NOTE() approx_model_name and target_model_name should use the same tokenizer!
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(approx_model_name, trust_remote_code=True)
Decoder().set_tokenizer(tokenizer)
print(f"begin loading models: \n {approx_model_name} \n {target_model_name}")
small_model = AutoModelForCausalLM.from_pretrained(approx_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True)
large_model = AutoModelForCausalLM.from_pretrained(target_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True)
print("finish loading models")
input_ids = tokenizer.encode(input_text, return_tensors='pt').to(torch_device)
top_k = 20
top_p = 0.9
torch.manual_seed(123)
output = autoregressive_sampling(input_ids, large_model, num_tokens, top_k = top_k, top_p=top_p)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
color_print(f"large (target) model autoregressive_sampling: {generated_text}")
if use_benchmark:
benchmark(autoregressive_sampling, "AS_large", use_profiling,
input_ids, large_model, num_tokens, top_k = top_k, top_p=top_p)
torch.manual_seed(123)
output = autoregressive_sampling(input_ids, small_model, num_tokens, top_k = top_k, top_p=top_p)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
color_print(f"small (approx) model autoregressive_sampling: {generated_text}")
if use_benchmark:
benchmark(autoregressive_sampling, "AS_small", use_profiling,
input_ids, small_model, num_tokens, top_k = top_k, top_p=top_p)
torch.manual_seed(123)
output = speculative_sampling_v2(input_ids, small_model, large_model, num_tokens, top_k = top_k, top_p=top_p, random_seed = random_seed)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
color_print(f"deepmind's speculative_sampling: {generated_text}")
torch.manual_seed(123)
output = speculative_sampling(input_ids, small_model, large_model, num_tokens, gamma = gamma, top_k = top_k, top_p=top_p, random_seed = random_seed, verbose = verbose)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
color_print(f"google's speculative_sampling: {generated_text}")
if use_benchmark:
benchmark(speculative_sampling, "SP", use_profiling,
input_ids, small_model, large_model, max_len = num_tokens, gamma = gamma, top_k = top_k, top_p=top_p, random_seed = random_seed)
if __name__ == "__main__":
args = parse_arguments()
generate(args.input, args.approx_model_name, args.target_model_name, num_tokens=args.max_tokens, gamma=args.gamma,
random_seed = args.seed, verbose=args.verbose, use_benchmark = args.benchmark)