-
Notifications
You must be signed in to change notification settings - Fork 169
/
References.bib
27 lines (25 loc) · 2.13 KB
/
References.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@article{audebert_beyond_2017,
title = "Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
year = "2017",
issn = "0924-2716",
doi = "https://doi.org/10.1016/j.isprsjprs.2017.11.011",
url = "http://www.sciencedirect.com/science/article/pii/S0924271617301818",
author = "Nicolas Audebert and Bertrand Le Saux and Sébastien Lefèvre",
keywords = "Deep learning, Remote sensing, Semantic mapping, Data fusion"
}
@inproceedings{audebert_semantic_2016,
title = {Semantic {Segmentation} of {Earth} {Observation} {Data} {Using} {Multimodal} and {Multi}-scale {Deep} {Networks}},
url = {https://link.springer.com/chapter/10.1007/978-3-319-54181-5_12},
doi = {10.1007/978-3-319-54181-5_12},
abstract = {This work investigates the use of deep fully convolutional neural networks (DFCNN) for pixel-wise scene labeling of Earth Observation images. Especially, we train a variant of the SegNet architecture on remote sensing data over an urban area and study different strategies for performing accurate semantic segmentation. Our contributions are the following: (1) we transfer efficiently a DFCNN from generic everyday images to remote sensing images; (2) we introduce a multi-kernel convolutional layer for fast aggregation of predictions at multiple scales; (3) we perform data fusion from heterogeneous sensors (optical and laser) using residual correction. Our framework improves state-of-the-art accuracy on the ISPRS Vaihingen 2D Semantic Labeling dataset.},
language = {en},
urldate = {2017-03-31},
booktitle = {Computer {Vision} – {ACCV} 2016},
publisher = {Springer, Cham},
author = {Audebert, Nicolas and Le Saux, Bertrand and Lefèvre, Sébastien},
month = nov,
year = {2016},
pages = {180--196},
file = {Audebert et al_2016_Semantic Segmentation of Earth Observation Data Using Multimodal and.pdf:/home/naudeber/Bibliographie/.zotero/storage/394SFXNP/Audebert et al_2016_Semantic Segmentation of Earth Observation Data Using Multimodal and.pdf:application/pdf;Snapshot:/home/naudeber/Bibliographie/.zotero/storage/PC7RWZAX/978-3-319-54181-5_12.html:text/html}
}