-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
561 lines (474 loc) · 24.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import datetime
import json
import logging
import math
import numpy as np
import os
import pytorch_lightning as pl
import random
import sys
import torch
from collections import defaultdict
from torch import nn
from torch.nn import functional as F
from tqdm import tqdm
from transformers import AutoModel, AdamW, get_linear_schedule_with_warmup
from utils import get_io_spans, get_bio_spans, LabelEncoder
def all_avg_eval(test_preds, test_targets, print_res=False):
pred_cnt = 0 # pred entity cnt
label_cnt = 0 # true label entity cnt
correct_cnt = 0 # correct predicted entity cnt
fp_cnt = 0 # misclassify O as I-
fn_cnt = 0 # misclassify I- as O
total_token_cnt = 0 # total token cnt
within_cnt = 0 # span correct but of wrong fine-grained type
outer_cnt = 0 # span correct but of wrong coarse-grained type
total_span_cnt = 0 # span correct
for episode_preds, episode_targets in zip(test_preds, test_targets):
assert len(episode_preds) == len(episode_targets)
for sent_pred, sent_target in zip(episode_preds, episode_targets):
assert len(sent_pred) == len(sent_target) > 0
pred_spans, _ = get_io_spans(sent_pred)
target_spans, _ = get_io_spans(sent_target)
pred_cnt += len(pred_spans)
label_cnt += len(target_spans)
for pi, pj, pl in pred_spans:
for ti, tj, tl in target_spans:
if pi == ti and pj == tj and pl == tl:
correct_cnt += 1
total_span_cnt += 1
elif pi == ti and pj == tj:
total_span_cnt += 1
if '-' in pl and '-' in tl:
pc, pf = pl.split('-')
tc, tf = tl.split('-')
if pc == tc:
within_cnt += 1
else:
outer_cnt += 1
for p, t in zip(sent_pred, sent_target):
assert p != '##NULL##' and t != '##NULL##'
if p == 'O' and t != 'O':
fn_cnt += 1
elif p != 'O' and t == 'O':
fp_cnt += 1
total_token_cnt += 1
precision = correct_cnt / (pred_cnt + 1e-6)
recall = correct_cnt / (label_cnt + 1e-6)
f1 = 2 * precision * recall / (precision + recall + 1e-6)
fp_error = fp_cnt / (total_token_cnt + 1e-6)
fn_error = fn_cnt / (total_token_cnt + 1e-6)
within_error = within_cnt / (total_span_cnt + 1e-6)
outer_error = outer_cnt / (total_span_cnt + 1e-6)
if print_res:
logging.info('precision: {0:3.4f}, recall: {1:3.4f}, f1: {2:3.4f}'.format(precision, recall, f1))
logging.info('fp: {0:3.4f}, fn: {1:3.4f}, within: {2:3.4f}, outer: {3:3.4f}'.format(
fp_error, fn_error, within_error, outer_error))
return precision, recall, f1, fp_error, fn_error, within_error, outer_error
def episode_avg_eval(test_preds, test_targets, print_res=False):
episode_f1 = []
episode_precision = []
episode_recall = []
for episode_preds, episode_targets in zip(test_preds, test_targets):
assert len(episode_preds) == len(episode_targets)
pred_cnt = 0
label_cnt = 0
correct_cnt = 0
for sent_pred, sent_target in zip(episode_preds, episode_targets):
assert len(sent_pred) == len(sent_target) > 0
pred_spans, _ = get_io_spans(sent_pred)
target_spans, _ = get_bio_spans(sent_target)
pred_cnt += len(pred_spans)
label_cnt += len(target_spans)
for pi, pj, pl in pred_spans:
for ti, tj, tl in target_spans:
if pi == ti and pj == tj and pl == tl:
correct_cnt += 1
precision = correct_cnt / (pred_cnt + 1e-6)
recall = correct_cnt / (label_cnt + 1e-6)
f1 = 2 * precision * recall / (precision + recall + 1e-6)
episode_f1.append(f1)
episode_precision.append(precision)
episode_recall.append(recall)
episode_avg_f1 = sum(episode_f1) / len(episode_f1)
episode_avg_precision = sum(episode_precision) / len(episode_precision)
episode_avg_recall = sum(episode_recall) / len(episode_recall)
if print_res:
logging.info('precision: {0:3.4f}, recall: {1:3.4f}, f1: {2:3.4f}'.format(
episode_avg_precision, episode_avg_recall, episode_avg_f1))
return episode_avg_f1, episode_avg_precision, episode_avg_recall
class FewShotBaseModel(pl.LightningModule):
def __init__(self):
super(FewShotBaseModel, self).__init__()
self.snips_mode = False
# wired but not to break old model
def set_snips_mode(self):
self.snips_mode = True
def unset_snips_mode(self):
self.snips_mode = False
@staticmethod
def assemble_sentence(output):
batch_preds = []
batch_targets = []
assert len(output['pred']) == len(output['target']) == len(output['types']) == len(output['query_id'])
for preds, targets, types, sent_ids in zip(output['pred'], output['target'], output['types'],
output['query_id']):
label_encoder = LabelEncoder(types)
episode_preds = defaultdict(list)
episode_targets = defaultdict(list)
assert len(preds) == len(targets) == len(sent_ids)
for chunk_pred, chunk_target, sent_id in zip(preds, targets, sent_ids):
chunk_pred = chunk_pred.cpu()
chunk_target = chunk_target.cpu()
episode_preds[sent_id].extend(chunk_pred[chunk_target >= 0].tolist())
episode_targets[sent_id].extend(chunk_target[chunk_target >= 0].tolist())
episode_keys = sorted(list(episode_preds.keys()))
episode_preds = [label_encoder.get(episode_preds[k]) for k in episode_keys]
episode_targets = [label_encoder.get(episode_targets[k]) for k in episode_keys]
batch_preds.append(episode_preds)
batch_targets.append(episode_targets)
return batch_preds, batch_targets
def eval_step(self, batch):
output = self(batch)
batch_jsons = [json.loads(json_str) for json_str in batch['jsons']]
batch_preds, batch_targets = self.assemble_sentence(output)
return batch_preds, batch_targets, batch_jsons
def eval_epoch_end(self, eval_step_outputs):
test_preds, test_targets, test_jsons = [], [], []
for batch_preds, batch_targets, batch_jsons in eval_step_outputs:
assert len(batch_preds) == len(batch_targets) == len(batch_jsons)
for episode_preds, episode_targets, episode_json in zip(batch_preds, batch_targets, batch_jsons):
assert len(episode_preds) == len(episode_targets) == len(episode_json['query'])
for sent_pred, sent_target, query_sent in zip(episode_preds, episode_targets, episode_json['query']):
words, labels, additional_info = query_sent
if 'zero_subword_remove' not in additional_info:
assert sent_target == labels, (sent_target, labels)
assert len(words) == len(labels) == len(sent_pred), (words, labels, sent_pred)
else:
for idx,l in additional_info['zero_subword_remove']:
sent_pred.insert(idx, 'O')
sent_target.insert(idx, l)
assert sent_target == labels, (sent_target, labels)
assert len(words) == len(labels) == len(sent_pred), (words, labels, sent_pred)
test_preds.extend(batch_preds)
test_targets.extend(batch_targets)
test_jsons.extend(batch_jsons)
if not self.snips_mode:
precision, recall, f1, fp_error, fn_error, within_error, outer_error =\
all_avg_eval(test_preds, test_targets, True)
return precision, recall, f1, fp_error, fn_error, within_error, outer_error
else:
bio_test_targets = []
for episode_json in test_jsons:
bio_episode_targets= []
for query_sent in episode_json['query']:
words, labels, additional_info = query_sent
bio_labels = additional_info['bio_labels']
bio_episode_targets.append(bio_labels)
bio_test_targets.append(bio_episode_targets)
episode_avg_f1, episode_avg_precision, episode_avg_recall =\
episode_avg_eval(test_preds, bio_test_targets, True)
return episode_avg_f1, episode_avg_precision, episode_avg_recall
def validation_step(self, batch, batch_idx):
return self.eval_step(batch)
def validation_epoch_end(self, valid_step_outputs):
logging.info('## Validation Result ##')
if not self.snips_mode:
precision, recall, f1, fp_error, fn_error, within_error, outer_error =\
self.eval_epoch_end(valid_step_outputs)
self.log('valid/precision', precision)
self.log('valid/recall', recall)
self.log('valid/f1', f1)
self.log('valid/fp_error', fp_error)
self.log('valid/fn_error', fn_error)
self.log('valid/within_error', within_error)
self.log('valid/outer_error', outer_error)
else:
episode_avg_f1, episode_avg_precision, episode_avg_recall = self.eval_epoch_end(valid_step_outputs)
self.log('valid/precision', episode_avg_precision)
self.log('valid/recall', episode_avg_recall)
self.log('valid/f1', episode_avg_f1)
def test_step(self, batch, batch_idx):
return self.eval_step(batch)
def test_epoch_end(self, test_step_outputs):
logging.info('## Test Result ##')
if not self.snips_mode:
precision, recall, f1, fp_error, fn_error, within_error, outer_error =\
self.eval_epoch_end(test_step_outputs)
self.log('test/precision', precision)
self.log('test/recall', recall)
self.log('test/f1', f1)
self.log('test/fp_error', fp_error)
self.log('test/fn_error', fn_error)
self.log('test/within_error', within_error)
self.log('test/outer_error', outer_error)
else:
episode_avg_f1, episode_avg_precision, episode_avg_recall = self.eval_epoch_end(test_step_outputs)
self.log('test/precision', episode_avg_precision)
self.log('test/recall', episode_avg_recall)
self.log('test/f1', episode_avg_f1)
class ClassificationBaseModel(FewShotBaseModel):
def __init__(self):
super(ClassificationBaseModel, self).__init__()
def assemble_sentence(self, output):
batch_preds = defaultdict(list)
batch_targets = defaultdict(list)
assert len(output['pred']) == len(output['target']) == len(output['sent_id'])
preds, targets, sent_ids = output['pred'], output['target'], output['sent_id']
for chunk_pred, chunk_target, sent_id in zip(preds, targets, sent_ids):
chunk_pred = chunk_pred.cpu()
chunk_target = chunk_target.cpu()
batch_preds[sent_id].extend(chunk_pred[chunk_target >= 0].tolist())
batch_targets[sent_id].extend(chunk_target[chunk_target >= 0].tolist())
episode_keys = sorted(list(batch_preds.keys()))
batch_preds = [self.label_encoder.get(batch_preds[k]) for k in episode_keys]
batch_targets = [self.label_encoder.get(batch_targets[k]) for k in episode_keys]
return batch_preds, batch_targets
def eval_step(self, batch):
output = self(batch)
batch_jsons = [json.loads(json_str) for json_str in batch['jsons']]
batch_preds, batch_targets = self.assemble_sentence(output)
return batch_preds, batch_targets, batch_jsons
def eval_epoch_end(self, eval_step_outputs):
test_preds, test_targets, test_jsons = [], [], []
for batch_preds, batch_targets, batch_jsons in eval_step_outputs:
assert len(batch_preds) == len(batch_targets) == len(batch_jsons)
for sent_pred, sent_target, sent_json in zip(batch_preds, batch_targets, batch_jsons):
words, labels, additional_info = sent_json
if 'zero_subword_remove' not in additional_info:
assert sent_target == labels, (sent_target, labels, additional_info)
assert len(words) == len(labels) == len(sent_pred), (words, labels, sent_pred)
else:
for idx,l in additional_info['zero_subword_remove']:
sent_pred.insert(idx, 'O')
sent_target.insert(idx, l)
assert sent_target == labels, (sent_target, labels)
assert len(words) == len(labels) == len(sent_pred), (words, labels, sent_pred)
test_preds.append(batch_preds)
test_targets.append(batch_targets)
test_jsons.append(batch_jsons)
if not self.snips_mode:
#global average each episode is a batch
precision, recall, f1, fp_error, fn_error, within_error, outer_error = \
all_avg_eval(test_preds, test_targets, True)
return precision, recall, f1, fp_error, fn_error, within_error, outer_error
else:
bio_test_targets = []
for batch_jsons in test_jsons:
for words, labels, additional_info in batch_jsons:
bio_labels = additional_info['bio_labels']
bio_test_targets.append(bio_labels)
flat_test_preds = [sent_pred for batch_preds in test_preds for sent_pred in batch_preds]
episode_avg_f1, episode_avg_precision, episode_avg_recall = \
episode_avg_eval([flat_test_preds], [bio_test_targets], True)
return episode_avg_f1, episode_avg_precision, episode_avg_recall
class DotAttention(nn.Module):
def __init__(self):
super(DotAttention, self).__init__()
def forward(self, query, key, value):
if query.size(0) < 20480 and key.size(0) < 20480 and value.size(0) < 20480:
atten_weight = (query.matmul(key.T)).softmax(dim=-1)
x = atten_weight.matmul(value)
return x, atten_weight
else:
assert not self.training, 'should only be called when we test very large N'
x = []
for query_chunk in torch.split(query, 2048, dim=0):
atten_weight = (query_chunk.matmul(key.T)).softmax(dim=-1)
x.append(atten_weight.matmul(value))
x = torch.cat(x, 0)
return x, None
class AvgAttention(nn.Module):
def __init__(self):
super(AvgAttention, self).__init__()
def forward(self, query, key, value):
x = torch.mean(value.view(-1, value.size(-1)), axis=0)
return x, None
class L2Scale(nn.Module):
def __init__(self):
super(L2Scale, self).__init__()
def forward(self, x):
return F.normalize(x, p=2.0, dim=-1)
class SpanExtractor(nn.Module):
def __init__(self, input_dim, output_dim, dropout=0, dropout_pos='before_linear', output='layernorm', max_len=10):
super(SpanExtractor, self).__init__()
self.output_dim = output_dim
self.input_dim = input_dim
self.dropout_pos = dropout_pos
self.proj = nn.Linear(input_dim * 2, output_dim)
self.dropout = nn.Dropout(dropout)
if output == 'layernorm':
self.output = nn.LayerNorm(output_dim)
elif output == 'simple-layernorm':
self.output = nn.LayerNorm(output_dim, elementwise_affine=False)
elif output == 'gelu':
self.output = nn.GELU()
elif output == 'tanh+layernorm':
self.output = nn.Sequential(nn.Tanh(), nn.LayerNorm(output_dim))
elif output == 'gelu+layernorm':
self.output = nn.Sequential(nn.GELU(), nn.LayerNorm(output_dim))
elif output == 'tanh':
self.output = nn.Tanh()
elif output == 'raw':
self.output = nn.Identity()
elif output == 'raw_norm':
self.output = L2Scale()
elif output == 'batchnorm':
self.output = nn.BatchNorm1d(output_dim)
else:
raise Exception('Unknown output layer')
self.max_len = max_len
self.subword_len_emb = nn.Embedding(max_len + 1, input_dim * 2)
nn.init.zeros_(self.subword_len_emb.weight)
self.word_len_emb = nn.Embedding(max_len + 1, input_dim * 2)
nn.init.zeros_(self.word_len_emb.weight)
def forward(self, word_repr, word_mask, gather_start, gather_end):
assert word_repr.ndim == 2
start = word_repr.index_select(0, gather_start)
end = word_repr.index_select(0, gather_end)
subword_len = torch.clamp(gather_end - gather_start + 1, 0, self.max_len)
subword_len_emb = self.subword_len_emb(subword_len)
word_cumsum = torch.cumsum(word_mask, -1)
word_len = torch.clamp(word_cumsum[gather_end] - word_cumsum[gather_start] + 1, 0, self.max_len)
word_len_emb = self.word_len_emb(word_len)
span_rep = torch.cat([start, end], dim=-1) + subword_len_emb + word_len_emb
if self.dropout_pos == 'before_linear':
span_rep = self.dropout(span_rep)
span_rep = self.proj(span_rep)
span_rep = self.output(span_rep)
elif self.dropout_pos == 'before_layernorm':
span_rep = self.dropout(span_rep)
span_rep = self.proj(span_rep)
span_rep = self.output(span_rep)
elif self.dropout_pos == 'final':
span_rep = self.proj(span_rep)
span_rep = self.output(span_rep)
span_rep = self.dropout(span_rep)
return span_rep
class L2SquareClassifier(nn.Module):
def __init__(self, num_class, embed_dim):
super(L2SquareClassifier, self).__init__()
self.class_center = nn.parameter.Parameter(torch.empty(num_class, embed_dim))
nn.init.kaiming_uniform_(self.class_center, a=math.sqrt(5))
self.output = nn.LogSoftmax(dim=-1)
def forward(self, token_embedding):
dis = 2 * token_embedding.matmul(self.class_center.T) - token_embedding.pow(2).sum(-1).unsqueeze(-1) - \
self.class_center.pow(2).sum(-1)
return self.output(dis)
class DotClassifier(nn.Module):
def __init__(self, num_class, embed_dim):
super(DotClassifier, self).__init__()
self.dot = nn.Linear(embed_dim, num_class)
self.output = nn.LogSoftmax(dim=-1)
def forward(self, token_embedding):
return self.output(self.dot(token_embedding))
class SpanEncoder(nn.Module):
def __init__(self, backbone_name, span_rep_dim, max_len, dropout, dropout_pos, span_output, pretrained_ckpt='',
reinit=False):
super(SpanEncoder, self).__init__()
self.bert = AutoModel.from_pretrained(backbone_name)
if not reinit:
self.span_extractor = SpanExtractor(self.bert.config.hidden_size, span_rep_dim, dropout, dropout_pos,
span_output, max_len)
if pretrained_ckpt != '':
res = self.load_state_dict(torch.load(pretrained_ckpt))
assert len(res.missing_keys) == 0 and len(res.unexpected_keys) == 0
else:
if pretrained_ckpt != '':
res = self.load_state_dict(torch.load(pretrained_ckpt), strict=False)
assert len(res.missing_keys) == 0 and all([k.startswith('span_extractor') for k in res.unexpected_keys])
self.span_extractor = SpanExtractor(self.bert.config.hidden_size, span_rep_dim, dropout, dropout_pos,
span_output, max_len)
def forward(self, token_id, atten_mask):
outputs = self.bert(token_id, attention_mask=atten_mask, output_hidden_states=True, return_dict=True)
bert_embedding = outputs['hidden_states'][-1]
return bert_embedding
class TokenExtractor(nn.Module):
def __init__(self, input_dim, output_dim, dropout=0, dropout_pos='before_linear', output='layernorm', ):
super(TokenExtractor, self).__init__()
self.output_dim = output_dim
self.input_dim = input_dim
self.dropout_pos = dropout_pos
self.proj = nn.Linear(input_dim, output_dim)
self.dropout = nn.Dropout(dropout)
if output == 'layernorm':
self.output = nn.LayerNorm(output_dim)
elif output == 'simple-layernorm':
self.output = nn.LayerNorm(output_dim, elementwise_affine=False)
elif output == 'gelu':
self.output = nn.GELU()
elif output == 'tanh':
self.output = nn.Tanh()
elif output == 'tanh+layernorm':
self.output = nn.Sequential(nn.Tanh(), nn.LayerNorm(output_dim))
elif output == 'gelu+layernorm':
self.output = nn.Sequential(nn.GELU(), nn.LayerNorm(output_dim))
elif output == 'raw':
self.output = nn.Identity()
elif output == 'raw_norm':
self.output = L2Scale()
elif output == 'batchnorm':
self.output = nn.BatchNorm1d(output_dim)
else:
raise Exception('Unknown output layer')
def forward(self, token_embedding):
if self.dropout_pos == 'before_linear':
token_embedding = self.dropout(token_embedding)
token_embedding = self.proj(token_embedding)
token_embedding = self.output(token_embedding)
elif self.dropout_pos == 'before_layernorm':
token_embedding = self.dropout(token_embedding)
token_embedding = self.proj(token_embedding)
token_embedding = self.output(token_embedding)
elif self.dropout_pos == 'final':
token_embedding = self.proj(token_embedding)
token_embedding = self.output(token_embedding)
token_embedding = self.dropout(token_embedding)
return token_embedding
class TokenEncoder(nn.Module):
def __init__(self, backbone_name, token_rep_dim, dropout, dropout_pos, span_output, pretrained_ckpt='',
reinit=False):
super(TokenEncoder, self).__init__()
self.bert = AutoModel.from_pretrained(backbone_name)
if not reinit:
self.token_extractor = TokenExtractor(self.bert.config.hidden_size, token_rep_dim, dropout, dropout_pos,
span_output)
if pretrained_ckpt != '':
res = self.load_state_dict(torch.load(pretrained_ckpt))
assert len(res.missing_keys) == 0 and len(res.unexpected_keys) == 0
else:
if pretrained_ckpt != '':
res = self.load_state_dict(torch.load(pretrained_ckpt), strict=False)
assert len(res.missing_keys) == 0 and all([k.startswith('token_extractor') for k in res.unexpected_keys])
self.token_extractor = TokenExtractor(self.bert.config.hidden_size, token_rep_dim, dropout, dropout_pos,
span_output)
def forward(self, token_id, atten_mask):
outputs = self.bert(token_id, attention_mask=atten_mask, output_hidden_states=True, return_dict=True)
bert_embedding = outputs['hidden_states'][-1]
return bert_embedding
def nn_metric(metric, query_emb, in_class_support_emb):
if query_emb.size(0)*query_emb.size(1) < 20480 and in_class_support_emb.size(0) < 20480:
if metric == 'dot':
in_class_sim = query_emb.inner(in_class_support_emb)
elif metric == 'cosine':
in_class_sim = query_emb.inner(in_class_support_emb)
elif metric == 'L2':
in_class_sim = -torch.cdist(query_emb, in_class_support_emb.unsqueeze(0)).pow(2)
else:
raise Exception('Unknown Distance Metric')
return in_class_sim.max(dim=2)[0]
else:
chunk_nn_sim = []
for query_chunk in torch.split(query_emb.view(-1, query_emb.size(-1)), 2048, dim=0):
if metric == 'dot':
in_class_sim = query_chunk.inner(in_class_support_emb)
elif metric == 'cosine':
in_class_sim = query_chunk.inner(in_class_support_emb)
elif metric == 'L2':
in_class_sim = -torch.cdist(query_chunk, in_class_support_emb).pow(2)
else:
raise Exception('Unknown Distance Metric')
chunk_max_v = in_class_sim.max(dim=1)[0]
chunk_nn_sim.append(chunk_max_v)
chunk_nn_sim = torch.cat(chunk_nn_sim, 0).view(query_emb.size(0), query_emb.size(1))
return chunk_nn_sim