-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_data.py
115 lines (96 loc) · 4.31 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import os
import re
from datasets import load_dataset
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('-dl', '--data_list', type=list,
default=['ecthr_a', 'ecthr_b', 'scotus', 'eurlex', 'ledgar', 'unfair_tos'])
parser.add_argument('-sl', '--split_list', type=list, default = ['train', 'validation', 'test'])
parser.add_argument('-ddp', '--data_dir_prefix', type=str, default='data')
parser.add_argument('-f', '--format', type=str, choices=['linear', 'nn', 'hier'], required=True)
args = parser.parse_args()
return args
def data2task(data):
return 'multi_label' if data not in ['scotus', 'ledgar'] else 'multi_class'
def data2hier(data):
return True if data in ['ecthr_a', 'ecthr_b', 'scotus'] else False
def split2name(split):
_split2name = {'train': 'train.txt', 'validation': 'valid.txt', 'test': 'test.txt'}
return _split2name[split]
def get_texts(data, dataset, hier=False):
if 'ecthr' in data:
if not hier:
texts = [' '.join(text) for text in dataset['text']]
else:
texts = [' [HIER] '.join(text) for text in dataset['text']]
return [' '.join(text.split()) for text in texts]
elif data == 'scotus' and hier:
texts = [' [HIER] '.join(re.split('\n{2,}', text)) for text in dataset['text']]
# Huggingface tokenizer ignores newline and tab,
# so it's okay to replace them with a space here.
for i in range(len(texts)):
texts[i] = texts[i].replace('\n', ' ')
texts[i] = texts[i].replace('\r', ' ')
texts[i] = texts[i].replace('\t', ' ')
return texts
elif data == 'case_hold':
return [contexts[0] + ' [SEP] '.join(holdings)
for contexts, holdings in zip(dataset['contexts'], dataset['endings'])]
else:
return [' '.join(text.split()) for text in dataset['text']]
def get_labels(data, dataset, task):
if task == 'multi_class':
return list(map(str, dataset['label']))
else:
if data == 'eurlex':
return [' '.join(map(str, [l for l in label if l < 100])) for label in dataset['labels']]
else:
return [' '.join(map(str, label)) for label in dataset['labels']]
def save_data(data_path, data):
with open(data_path, 'w') as f:
for text, label in zip(data['text'], data['labels']):
assert '\n' not in label+text
assert '\r' not in label+text
assert '\t' not in label+text
formatted_instance = '\t'.join([label, text])
f.write(f'{formatted_instance}\n')
def main():
# args
args = get_args()
data_dir = f'{args.data_dir_prefix}_{args.format}'
os.makedirs(data_dir, exist_ok=True)
# generate
for data in args.data_list:
if args.format == 'hier' and not data2hier(data):
continue
data_path = os.path.join(data_dir, data)
os.makedirs(data_path, exist_ok=True)
processed_data = {}
for split in args.split_list:
dataset = load_dataset('coastalcph/lex_glue', data, split=split, trust_remote_code=True)
texts = get_texts(data, dataset, hier=args.format == 'hier')
labels = get_labels(data, dataset, data2task(data))
assert len(texts) == len(labels)
print(f'{data} ({split}): num_instance = {len(texts)}')
processed_data[split] = {'text': texts, 'labels': labels}
# format
if args.format == 'linear':
# train
train_path = os.path.join(data_path, split2name('train'))
train_data = {
'text': processed_data['train']['text'] + processed_data['validation']['text'],
'labels': processed_data['train']['labels'] + processed_data['validation']['labels']
}
save_data(train_path, train_data)
# test
test_path = os.path.join(data_path, split2name('test'))
test_data = processed_data['test']
save_data(test_path, test_data)
elif args.format == 'nn' or args.format == 'hier':
# train/validation/test
for split in processed_data:
split_path = os.path.join(data_path, split2name(split))
save_data(split_path, processed_data[split])
if __name__ == '__main__':
main()