Skip to content

Commit 3263e71

Browse files
authored
Merge pull request #125 from Kai-Striega/broadcast-rework/mirr
ENH: mirr: Mimic broadcasting
2 parents 3f67c27 + 88b6fd6 commit 3263e71

File tree

3 files changed

+133
-66
lines changed

3 files changed

+133
-66
lines changed

numpy_financial/_financial.py

+46-21
Original file line numberDiff line numberDiff line change
@@ -963,12 +963,12 @@ def mirr(values, finance_rate, reinvest_rate, *, raise_exceptions=False):
963963
964964
Parameters
965965
----------
966-
values : array_like
966+
values : array_like, 1D or 2D
967967
Cash flows, where the first value is considered a sunk cost at time zero.
968968
It must contain at least one positive and one negative value.
969-
finance_rate : scalar
969+
finance_rate : scalar or 1D array
970970
Interest rate paid on the cash flows.
971-
reinvest_rate : scalar
971+
reinvest_rate : scalar or D array
972972
Interest rate received on the cash flows upon reinvestment.
973973
raise_exceptions: bool, optional
974974
Flag to raise an exception when the MIRR cannot be computed due to
@@ -977,7 +977,7 @@ def mirr(values, finance_rate, reinvest_rate, *, raise_exceptions=False):
977977
978978
Returns
979979
-------
980-
out : float
980+
out : float or 2D array
981981
Modified internal rate of return
982982
983983
Notes
@@ -1007,6 +1007,22 @@ def mirr(values, finance_rate, reinvest_rate, *, raise_exceptions=False):
10071007
>>> npf.mirr([-100, 50, -60, 70], 0.10, 0.12)
10081008
-0.03909366594356467
10091009
1010+
It is also possible to supply multiple cashflows or pairs of
1011+
finance and reinvstment rates, note that in this case the number of elements
1012+
in each of the rates arrays must match.
1013+
1014+
>>> values = [
1015+
... [-4500, -800, 800, 800, 600],
1016+
... [-120000, 39000, 30000, 21000, 37000],
1017+
... [100, 200, -50, 300, -200],
1018+
... ]
1019+
>>> finance_rate = [0.05, 0.08, 0.10]
1020+
>>> reinvestment_rate = [0.08, 0.10, 0.12]
1021+
>>> npf.mirr(values, finance_rate, reinvestment_rate)
1022+
array([[-0.1784449 , -0.17328716, -0.1684366 ],
1023+
[ 0.04627293, 0.05437856, 0.06252201],
1024+
[ 0.35712458, 0.40628857, 0.44435295]])
1025+
10101026
Now, let's consider the scenario where all cash flows are negative.
10111027
10121028
>>> npf.mirr([-100, -50, -60, -70], 0.10, 0.12)
@@ -1025,22 +1041,31 @@ def mirr(values, finance_rate, reinvest_rate, *, raise_exceptions=False):
10251041
numpy_financial._financial.NoRealSolutionError:
10261042
No real solution exists for MIRR since all cashflows are of the same sign.
10271043
"""
1028-
values = np.asarray(values)
1029-
n = values.size
1030-
1031-
# Without this explicit cast the 1/(n - 1) computation below
1032-
# becomes a float, which causes TypeError when using Decimal
1033-
# values.
1034-
if isinstance(finance_rate, Decimal):
1035-
n = Decimal(n)
1036-
1037-
pos = values > 0
1038-
neg = values < 0
1039-
if not (pos.any() and neg.any()):
1044+
values_inner = np.atleast_2d(values).astype(np.float64)
1045+
finance_rate_inner = np.atleast_1d(finance_rate).astype(np.float64)
1046+
reinvest_rate_inner = np.atleast_1d(reinvest_rate).astype(np.float64)
1047+
n = values_inner.shape[1]
1048+
1049+
if finance_rate_inner.size != reinvest_rate_inner.size:
10401050
if raise_exceptions:
1041-
raise NoRealSolutionError('No real solution exists for MIRR since'
1042-
' all cashflows are of the same sign.')
1051+
raise ValueError("finance_rate and reinvest_rate must have the same size")
10431052
return np.nan
1044-
numer = np.abs(npv(reinvest_rate, values * pos))
1045-
denom = np.abs(npv(finance_rate, values * neg))
1046-
return (numer / denom) ** (1 / (n - 1)) * (1 + reinvest_rate) - 1
1053+
1054+
out_shape = _get_output_array_shape(values_inner, finance_rate_inner)
1055+
out = np.empty(out_shape)
1056+
1057+
for i, v in enumerate(values_inner):
1058+
for j, (rr, fr) in enumerate(zip(reinvest_rate_inner, finance_rate_inner)):
1059+
pos = v > 0
1060+
neg = v < 0
1061+
1062+
if not (pos.any() and neg.any()):
1063+
if raise_exceptions:
1064+
raise NoRealSolutionError("No real solution exists for MIRR since"
1065+
" all cashflows are of the same sign.")
1066+
out[i, j] = np.nan
1067+
else:
1068+
numer = np.abs(npv(rr, v * pos))
1069+
denom = np.abs(npv(fr, v * neg))
1070+
out[i, j] = (numer / denom) ** (1 / (n - 1)) * (1 + rr) - 1
1071+
return _ufunc_like(out)

numpy_financial/tests/strategies.py

+34
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
import numpy as np
2+
from hypothesis import strategies as st
3+
from hypothesis.extra import numpy as npst
4+
5+
real_scalar_dtypes = st.one_of(
6+
npst.floating_dtypes(),
7+
npst.integer_dtypes(),
8+
npst.unsigned_integer_dtypes()
9+
)
10+
nicely_behaved_doubles = npst.from_dtype(
11+
np.dtype("f8"),
12+
allow_nan=False,
13+
allow_infinity=False,
14+
allow_subnormal=False,
15+
)
16+
cashflow_array_strategy = npst.arrays(
17+
dtype=npst.floating_dtypes(sizes=64),
18+
shape=npst.array_shapes(min_dims=1, max_dims=2, min_side=0, max_side=25),
19+
elements=nicely_behaved_doubles,
20+
)
21+
cashflow_list_strategy = cashflow_array_strategy.map(lambda x: x.tolist())
22+
cashflow_array_like_strategy = st.one_of(
23+
cashflow_array_strategy,
24+
cashflow_list_strategy,
25+
)
26+
short_nicely_behaved_doubles = npst.arrays(
27+
dtype=npst.floating_dtypes(sizes=64),
28+
shape=npst.array_shapes(min_dims=0, max_dims=1, min_side=0, max_side=5),
29+
elements=nicely_behaved_doubles,
30+
)
31+
32+
when_strategy = st.sampled_from(
33+
['end', 'begin', 'e', 'b', 0, 1, 'beginning', 'start', 'finish']
34+
)

numpy_financial/tests/test_financial.py

+53-45
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,12 @@
11
import math
2+
import warnings
23
from decimal import Decimal
34

4-
import hypothesis.extra.numpy as npst
5-
import hypothesis.strategies as st
6-
75
# Don't use 'import numpy as np', to avoid accidentally testing
86
# the versions in numpy instead of numpy_financial.
97
import numpy
108
import pytest
11-
from hypothesis import given, settings
9+
from hypothesis import assume, given
1210
from numpy.testing import (
1311
assert_,
1412
assert_allclose,
@@ -17,42 +15,11 @@
1715
)
1816

1917
import numpy_financial as npf
20-
21-
22-
def float_dtype():
23-
return npst.floating_dtypes(sizes=[32, 64], endianness="<")
24-
25-
26-
def int_dtype():
27-
return npst.integer_dtypes(sizes=[32, 64], endianness="<")
28-
29-
30-
def uint_dtype():
31-
return npst.unsigned_integer_dtypes(sizes=[32, 64], endianness="<")
32-
33-
34-
real_scalar_dtypes = st.one_of(float_dtype(), int_dtype(), uint_dtype())
35-
36-
37-
cashflow_array_strategy = npst.arrays(
38-
dtype=real_scalar_dtypes,
39-
shape=npst.array_shapes(min_dims=1, max_dims=2, min_side=0, max_side=25),
40-
)
41-
cashflow_list_strategy = cashflow_array_strategy.map(lambda x: x.tolist())
42-
43-
cashflow_array_like_strategy = st.one_of(
18+
from numpy_financial.tests.strategies import (
19+
cashflow_array_like_strategy,
4420
cashflow_array_strategy,
45-
cashflow_list_strategy,
46-
)
47-
48-
short_scalar_array_strategy = npst.arrays(
49-
dtype=real_scalar_dtypes,
50-
shape=npst.array_shapes(min_dims=0, max_dims=1, min_side=0, max_side=5),
51-
)
52-
53-
54-
when_strategy = st.sampled_from(
55-
['end', 'begin', 'e', 'b', 0, 1, 'beginning', 'start', 'finish']
21+
short_nicely_behaved_doubles,
22+
when_strategy,
5623
)
5724

5825

@@ -285,8 +252,7 @@ def test_npv(self):
285252
rtol=1e-2,
286253
)
287254

288-
@given(rates=short_scalar_array_strategy, values=cashflow_array_strategy)
289-
@settings(deadline=None)
255+
@given(rates=short_nicely_behaved_doubles, values=cashflow_array_strategy)
290256
def test_fuzz(self, rates, values):
291257
npf.npv(rates, values)
292258

@@ -393,6 +359,23 @@ def test_mirr(self, values, finance_rate, reinvest_rate, expected):
393359
else:
394360
assert_(numpy.isnan(result))
395361

362+
def test_mirr_broadcast(self):
363+
values = [
364+
[-4500, -800, 800, 800, 600],
365+
[-120000, 39000, 30000, 21000, 37000],
366+
[100, 200, -50, 300, -200],
367+
]
368+
finance_rate = [0.05, 0.08, 0.10]
369+
reinvestment_rate = [0.08, 0.10, 0.12]
370+
# Found using Google sheets
371+
expected = numpy.array([
372+
[-0.1784449, -0.17328716, -0.1684366],
373+
[0.04627293, 0.05437856, 0.06252201],
374+
[0.35712458, 0.40628857, 0.44435295]
375+
])
376+
actual = npf.mirr(values, finance_rate, reinvestment_rate)
377+
assert_allclose(actual, expected)
378+
396379
def test_mirr_no_real_solution_exception(self):
397380
# Test that if there is no solution because all the cashflows
398381
# have the same sign, then npf.mirr returns NoRealSolutionException
@@ -402,6 +385,31 @@ def test_mirr_no_real_solution_exception(self):
402385
with pytest.raises(npf.NoRealSolutionError):
403386
npf.mirr(val, 0.10, 0.12, raise_exceptions=True)
404387

388+
@given(
389+
values=cashflow_array_like_strategy,
390+
finance_rate=short_nicely_behaved_doubles,
391+
reinvestment_rate=short_nicely_behaved_doubles,
392+
)
393+
def test_fuzz(self, values, finance_rate, reinvestment_rate):
394+
assume(finance_rate.size == reinvestment_rate.size)
395+
396+
# NumPy warns us of arithmetic overflow/underflow
397+
# this only occurs when hypothesis generates extremely large values
398+
# that are unlikely to ever occur in the real world.
399+
with warnings.catch_warnings():
400+
warnings.simplefilter("ignore")
401+
npf.mirr(values, finance_rate, reinvestment_rate)
402+
403+
@given(
404+
values=cashflow_array_like_strategy,
405+
finance_rate=short_nicely_behaved_doubles,
406+
reinvestment_rate=short_nicely_behaved_doubles,
407+
)
408+
def test_mismatching_rates_raise(self, values, finance_rate, reinvestment_rate):
409+
assume(finance_rate.size != reinvestment_rate.size)
410+
with pytest.raises(ValueError):
411+
npf.mirr(values, finance_rate, reinvestment_rate, raise_exceptions=True)
412+
405413

406414
class TestNper:
407415
def test_basic_values(self):
@@ -432,10 +440,10 @@ def test_broadcast(self):
432440
)
433441

434442
@given(
435-
rates=short_scalar_array_strategy,
436-
payments=short_scalar_array_strategy,
437-
present_values=short_scalar_array_strategy,
438-
future_values=short_scalar_array_strategy,
443+
rates=short_nicely_behaved_doubles,
444+
payments=short_nicely_behaved_doubles,
445+
present_values=short_nicely_behaved_doubles,
446+
future_values=short_nicely_behaved_doubles,
439447
whens=when_strategy,
440448
)
441449
def test_fuzz(self, rates, payments, present_values, future_values, whens):

0 commit comments

Comments
 (0)