forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocess.py
162 lines (139 loc) · 4.79 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import json
import logging
import os
import sys
import numpy as np
import torch
from dgl.data import LegacyTUDataset
def _load_check_mark(path: str):
if os.path.exists(path):
with open(path, "r") as f:
return json.load(f)
else:
return {}
def _save_check_mark(path: str, marks: dict):
with open(path, "w") as f:
json.dump(marks, f)
def node_label_as_feature(dataset: LegacyTUDataset, mode="concat", save=True):
"""
Description
-----------
Add node labels to graph node features dict
Parameters
----------
dataset : LegacyTUDataset
The dataset object
concat : str, optional
How to add node label to the graph. Valid options are "add",
"replace" and "concat".
- "add": Directly add node_label to graph node feature dict.
- "concat": Concatenate "feat" and "node_label"
- "replace": Use "node_label" as "feat"
Default: :obj:`"concat"`
save : bool, optional
Save the result dataset.
Default: :obj:`True`
"""
# check if node label is not available
if (
not os.path.exists(dataset._file_path("node_labels"))
or len(dataset) == 0
):
logging.warning("No Node Label Data")
return dataset
# check if has cached value
check_mark_name = "node_label_as_feature"
check_mark_path = os.path.join(
dataset.save_path, "info_{}_{}.json".format(dataset.name, dataset.hash)
)
check_mark = _load_check_mark(check_mark_path)
if (
check_mark_name in check_mark
and check_mark[check_mark_name]
and not dataset._force_reload
):
logging.warning("Using cached value in node_label_as_feature")
return dataset
logging.warning(
"Adding node labels into node features..., mode={}".format(mode)
)
# check if graph has "feat"
if "feat" not in dataset[0][0].ndata:
logging.warning("Dataset has no node feature 'feat'")
if mode.lower() == "concat":
mode = "replace"
# first read node labels
DS_node_labels = dataset._idx_from_zero(
np.loadtxt(dataset._file_path("node_labels"), dtype=int)
)
one_hot_node_labels = dataset._to_onehot(DS_node_labels)
# read graph idx
DS_indicator = dataset._idx_from_zero(
np.genfromtxt(dataset._file_path("graph_indicator"), dtype=int)
)
node_idx_list = []
for idx in range(np.max(DS_indicator) + 1):
node_idx = np.where(DS_indicator == idx)
node_idx_list.append(node_idx[0])
# add to node feature dict
for idx, g in zip(node_idx_list, dataset.graph_lists):
node_labels_tensor = torch.tensor(one_hot_node_labels[idx, :])
if mode.lower() == "concat":
g.ndata["feat"] = torch.cat(
(g.ndata["feat"], node_labels_tensor), dim=1
)
elif mode.lower() == "add":
g.ndata["node_label"] = node_labels_tensor
else: # replace
g.ndata["feat"] = node_labels_tensor
if save:
check_mark[check_mark_name] = True
_save_check_mark(check_mark_path, check_mark)
dataset.save()
return dataset
def degree_as_feature(dataset: LegacyTUDataset, save=True):
"""
Description
-----------
Use node degree (in one-hot format) as node feature
Parameters
----------
dataset : LegacyTUDataset
The dataset object
save : bool, optional
Save the result dataset.
Default: :obj:`True`
"""
# first check if already have such feature
check_mark_name = "degree_as_feat"
feat_name = "feat"
check_mark_path = os.path.join(
dataset.save_path, "info_{}_{}.json".format(dataset.name, dataset.hash)
)
check_mark = _load_check_mark(check_mark_path)
if (
check_mark_name in check_mark
and check_mark[check_mark_name]
and not dataset._force_reload
):
logging.warning("Using cached value in 'degree_as_feature'")
return dataset
logging.warning("Adding node degree into node features...")
min_degree = sys.maxsize
max_degree = 0
for i in range(len(dataset)):
degrees = dataset.graph_lists[i].in_degrees()
min_degree = min(min_degree, degrees.min().item())
max_degree = max(max_degree, degrees.max().item())
vec_len = max_degree - min_degree + 1
for i in range(len(dataset)):
num_nodes = dataset.graph_lists[i].num_nodes()
node_feat = torch.zeros((num_nodes, vec_len))
degrees = dataset.graph_lists[i].in_degrees()
node_feat[torch.arange(num_nodes), degrees - min_degree] = 1.0
dataset.graph_lists[i].ndata[feat_name] = node_feat
if save:
check_mark[check_mark_name] = True
dataset.save()
_save_check_mark(check_mark_path, check_mark)
return dataset