-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmain_parallel.py
263 lines (228 loc) · 10.1 KB
/
main_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
Licensed under the NVIDIA Source Code License. See LICENSE at https://github.com/nv-tlabs/GameGAN_code.
Authors: Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, Sanja Fidler
"""
import os
import sys
import torch
import time
sys.path.append('..')
import config
import utils
from trainer import Trainer
import torchvision.utils as vutils
import torch.distributed as dist
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
import torch.nn as nn
sys.path.insert(0, './data')
import dataloader
import copy
def setup(rank, world_size, seed):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("gloo", rank=rank, world_size=world_size)
torch.manual_seed(seed)
def train_gamegan(gpu, opts):
torch.backends.cudnn.benchmark = True
normalize = True
opts = copy.deepcopy(opts)
start_epoch = 0
opts.img_size = (opts.img_size, opts.img_size)
warm_up = opts.warm_up
opts.gpu = gpu
opts.num_data_types = len(opts.data.split('-'))
load_weights = False
# load model
if opts.saved_model is not None and opts.saved_model != '':
gpu = opts.gpu
log_dir = opts.log_dir
saved_model = torch.load(opts.saved_model, map_location='cpu')
saved_optim = torch.load(opts.saved_optim, map_location='cpu')
opts = saved_model['opts']
opts.gpu = gpu
opts.log_dir = log_dir
warm_up = opts.warm_up
start_epoch = saved_model['epoch']
load_weights = True
if opts.num_gpu > 1:
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=opts.num_gpu,
rank=gpu
)
torch.manual_seed(opts.seed)
torch.cuda.set_device(gpu)
# create model
netG, netD = utils.build_models(opts)
# choose optimizer
optD = utils.choose_optimizer(netD, opts, opts.lrD)
keyword = 'graphic'
optG_temporal = utils.choose_optimizer(netG, opts, opts.lrG_temporal, exclude=keyword,
model_name='optG_temporal')
optG_graphic = utils.choose_optimizer(netG, opts, opts.lrG_graphic, include=keyword, model_name='optG_graphic')
if load_weights:
utils.load_my_state_dict(netG, saved_model['netG'])
utils.load_my_state_dict(netD, saved_model['netD'])
optG_temporal.load_state_dict(saved_optim['optG_temporal'])
optG_graphic.load_state_dict(saved_optim['optG_graphic'])
optD.load_state_dict(saved_optim['optD'])
del saved_model, saved_optim
if opts.num_gpu > 1:
netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu], find_unused_parameters=True)
netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu], find_unused_parameters=True)
# dataset ---
print('setting up dataset')
if opts.num_gpu > 1:
train_dataset = dataloader.get_custom_dataset(opts, set_type=0, getLoader=False)
val_dataset = dataloader.get_custom_dataset(opts, set_type=1, getLoader=False)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=opts.num_gpu,
shuffle=True,
rank=gpu
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=opts.bs,
shuffle=False,
num_workers=5,
pin_memory=True,
sampler=train_sampler,
drop_last=True)
val_sampler = torch.utils.data.distributed.DistributedSampler(
val_dataset,
num_replicas=opts.num_gpu,
shuffle=False,
rank=gpu
)
val_loader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=opts.bs,
shuffle=False,
num_workers=5,
pin_memory=True,
sampler=val_sampler,
drop_last=True)
else:
train_loader = dataloader.get_custom_dataset(opts, set_type=0, getLoader=True)
val_loader = dataloader.get_custom_dataset(opts, set_type=1, getLoader=True)
# set up logger and trainer
logging = True if gpu == 0 else False
if logging:
logger = SummaryWriter(opts.log_dir)
zdist = utils.get_zdist('gaussian', opts.z)
trainer = Trainer(opts,
netG, netD,
optG_temporal, optG_graphic, optD,
opts.gan_type, opts.reg_type, opts.LAMBDA, zdist)
vis_num_row = 1
if opts.num_steps > 29:
vis_num_row = 3
num_vis = 1
cur_lr = opts.lr
for epoch in range(start_epoch, opts.nep):
if epoch % opts.lr_decay_epoch == 0 and epoch > 0 and cur_lr > opts.min_lr:
cur_lr = cur_lr * 0.5
utils.adjust_learning_rate(optG_temporal, cur_lr)
utils.adjust_learning_rate(optG_graphic, cur_lr)
utils.adjust_learning_rate(optD, cur_lr)
print('Start epoch %d...' % epoch) if logging else None
data_iters, train_len = [], 99999999999
data_iters.append(iter(train_loader))
if len(data_iters[-1]) < train_len:
train_len = len(data_iters[-1])
torch.cuda.empty_cache()
log_iter = max(1,int(train_len // 10))
write_d = 0
for step in range(train_len):
it = epoch * train_len + step
# prepare data
sample = None
states, actions, neg_actions = utils.get_data(data_iters, opts)
# Generators updates
start = time.time()
gloss_dict, gloss, gout, grads, dout_fake = \
trainer.generator_trainstep(states, actions, warm_up=warm_up, epoch=epoch)
gtime = time.time() - start
# Discriminator updates
if ((it + 1) % opts.Diters) == 0 and opts.gan_loss:
start = time.time()
dloss_dict = trainer.discriminator_trainstep(states, actions,
neg_actions, warm_up=warm_up, gout=gout, dout_fake=dout_fake,
epoch=epoch, step=step)
dtime = time.time() - start
# Log
if logging:
with torch.no_grad():
if step == 0:
utils.plot_grad({'netG': trainer.netG, 'netD': trainer.netD}, logger, it)
loss_str = 'Generator [epoch %d, step %d / %d] ' % (epoch, step, train_len)
for k, v in gloss_dict.items():
if not (type(v) is float):
if (step % log_iter) == 0:
logger.add_scalar('losses/' + k, v.data.item(), it)
loss_str += k + ': ' + str(v.data.item()) + ', '
print(loss_str)
print('netG update:%f' % (gtime))
if (step % log_iter) == 0:
# logging visualization
utils.draw_output(gout, states, warm_up, opts, vutils, vis_num_row, normalize, logger,
it,
num_vis, tag='trn_images')
if ((it + 1) % opts.Diters) == 0 and opts.gan_loss:
loss_str = 'Discriminator [epoch %d, step %d / %d] ' % (epoch, step, train_len)
for k, v in dloss_dict.items():
if not type(v) is float:
if (write_d % (log_iter // opts.Diters) == 0):
logger.add_scalar('losses/' + k, v.data.item(), it)
loss_str += k + ': ' + str(v.data.item()) + ', '
write_d += 1
print(loss_str)
print('netD update:%f' % (dtime))
del gloss_dict, gloss, gout, grads, dout_fake, states, actions, neg_actions, sample
if opts.gan_loss:
del dloss_dict
print('Validation epoch %d...' % epoch) if logging else None
data_iters, val_len = [], 99999999999
data_iters.append(iter(val_loader))
if len(data_iters[-1]) < val_len:
val_len = len(data_iters[-1])
torch.cuda.empty_cache()
max_vis = 10
for step in range(val_len):
it = epoch * val_len + step
# prepare data
states, actions, neg_actions = utils.get_data(data_iters, opts)
trainer.netG.eval()
if step < max_vis:
with torch.no_grad():
loss_dict, gloss, gout, _, _ = trainer.generator_trainstep(states, actions, warm_up=warm_up,
train=False,
epoch=epoch,
)
if logging:
if opts.final_l1 or opts.final_l2:
logger.add_scalar('val_losses/recon_loss', loss_dict['loss_recon'], it)
utils.draw_output(gout, states, warm_up, opts, vutils, vis_num_row, normalize, logger, it,
num_vis, tag='val_images')
del loss_dict, gloss, gout
else:
break
save_epoch = opts.save_epoch
if epoch % save_epoch == 0 and epoch > save_epoch - 1 and logging:
print('Saving checkpoint')
utils.save_model(os.path.join(opts.log_dir, 'model' + str(epoch) + '.pt'), epoch, netG, netD, opts)
utils.save_optim(os.path.join(opts.log_dir, 'optim' + str(epoch) + '.pt'), epoch, optG_temporal,
optG_graphic, optD)
if __name__ == '__main__':
parser = config.init_parser()
opts, args = parser.parse_args(sys.argv)
if opts.num_gpu > 1:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8888'
mp.spawn(train_gamegan, nprocs=opts.num_gpu, args=(opts,))
else:
train_gamegan(opts.gpu, opts)