-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_06_temporal_compression.py
executable file
·200 lines (155 loc) · 7.58 KB
/
demo_06_temporal_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python
# SPDX-License-Identifier: MIT
# See LICENSE file for additional copyright and license details.
import os, datetime, sys, argparse, random
import numpy as np
import matplotlib.pyplot as plt
import modules
import pointgen
import utils
import plotter
import style
DEMO_NAME = "demo_06_temporal_compression"
def find_sequence(layers, periods, symbols, global_start, global_target, args, recorder):
"""Main Algorithm"""
# number of scales available
nscales = len(periods)
# active symbols - everything on scale 0
active_symbols = [global_start] # layers[0].ts[symbols[global_start].t[0]].domain
targets = [global_target]
i = 0
tick = 0
scale = 0
any_target_found = utils.intersect(targets, active_symbols)
while not any_target_found:
for s in active_symbols:
symbols[s].retrieval_tick = tick
# fetch all symbols that follow from a given set of active symbols
next_symbols = layers[scale].expand(active_symbols, symbols, tick)
# the next active symbols are all those that are not already in the set
# of active symbols, and for which the retrieval tick is not yet set
active_symbols = [s for s in next_symbols if s not in active_symbols and symbols[s].retrieval_tick < 0]
recorder.record_expansion(
scale, tick,
global_start, targets,
active_symbols, utils.intersect(targets, active_symbols))
# increase scale if we didn't find anything on this one
if i >= args.max_i:
scale += 1
if scale >= nscales:
scale = nscales - 1
i = 0
i += 1
tick += 1
# check if we reached the destination
any_target_found = utils.intersect(targets, active_symbols) != []
if any_target_found:
break
def main(args) :
# get a string for this simulation and generate the directory
global DEMO_NAME
# grid periods to use in this demo
periods = [0.2]
for i in range(1, args.nscales):
periods.append(periods[-1] * np.sqrt(2))
dir_str = "{}/{}_{}.d".format(args.output_dir, DEMO_NAME, args.pointgen)
if args.save_figures:
print("Saving figures to directory {}".format(dir_str))
if not os.path.exists(dir_str):
os.mkdir(dir_str)
# generate symbols
print("Generating symbols.")
nscales = len(periods)
mindist = periods[0]/4
if args.pointgen == 'hammersley':
symbols = utils.gen_symbols(args.W, args.H, args.N, nscales=nscales)
else:
symbols = utils.gen_symbols(args.W, args.H, N=args.N, nscales=nscales, method='rmind1', mindist=mindist)
# create transition layers and associate each with all available symbols
print("Generating transition layers")
z = 0
layers = []
for period in periods:
print("Generating layer {} of {}".format(z+1, len(periods)))
layers.append(modules.TransitionLayer(period, args.W, args.H, pointgen.hex))
layers[-1].associate(symbols, len(layers)-1)
z += 1
# select desired start and target symbols
global_start, _ = utils.get_closest_symbol(symbols, np.array([args.startX, args.startY]))
global_target, _ = utils.get_closest_symbol(symbols, np.array([args.targetX, args.targetY]))
##
## Algorithm start #################################################################
##
print("Running algorithm.")
recorder = utils.Recorder(nscales)
find_sequence(layers, periods, symbols, global_start, global_target, args, recorder)
print("Done.")
##
## Algorithm end ##################################################################
##
# plot that only shows the transition centers
fig, axs = plotter.setup(args, len(periods), ion=False)
for scale in range(args.nscales):
# exploit the symbol plotter here
plotter.rectangular_scene(axs[scale], args.W, args.H)
plotter.symbols(axs[scale], layers[scale].ts, range(len(layers[scale].ts)))
plt.draw()
if args.save_figures:
fig.savefig("{}/transition_centers.svg".format(dir_str))
plt.show()
# plotting results
fig, axs = plotter.setup(args, len(periods), ion=False)
for ax in axs:
plotter.rectangular_scene(ax, args.W, args.H)
plotter.symbols(ax, symbols, range(len(symbols)))
# global start and target
plotter.start_target(ax, symbols, [global_start], [global_target])
scale = nscales-1
while scale >= 0:
col_tmp = utils.Config()
col_tmp.active = 'red'
ts = []
for e in recorder.expansions[scale]:
plotter.symbols(axs[scale], symbols, e.active_symbols, only_active=False)
for s in e.active_symbols:
ts.append(layers[scale].ts[symbols[s].t[scale]])
ts = list(set(ts))
for t in ts:
plotter.transition_domain(axs[scale], t, periods[scale])
scale -= 1
# find a few samples
# MonteCarloSamples = [list() for n in range(nscales)]
print("Monte Carlo sampling.")
for i in range(args.M):
# backtracking ala Dijkstra
p = symbols[global_target]
s = symbols[global_target]
while not (s == symbols[global_start]):
p = symbols[p.getRandomParent()]
plotter.sample_segment(axs[-1], s, p)
s = p
plt.draw()
if args.save_figures:
fig.savefig("{}/results.svg".format(dir_str))
plt.show()
if __name__ == "__main__":
random.seed()
np.random.seed()
parser = argparse.ArgumentParser(prog='demo_04_scalespace_refinement_ascending.py', description="propagate through the transition system")
parser.add_argument('--datadir' , default='trajectory_data' , type=str , help="Directory for output files")
parser.add_argument('--W' , type=float , default=1.0 , help='Width of the environment')
parser.add_argument('--H' , type=float , default=1.0 , help='Height of the environment')
parser.add_argument('--startX' , type=float , default=0.1 , help='Select start symbol closest to this X')
parser.add_argument('--startY' , type=float , default=0.2 , help='Select start symbol closest to this Y')
parser.add_argument('--targetX' , type=float , default=0.8 , help='Select target symbol closest to this X')
parser.add_argument('--targetY' , type=float , default=0.8 , help='Select target symbol closest to this Y')
parser.add_argument('--N' , type=int , default=500 , help='Number of symbols to generate')
parser.add_argument('--M' , type=int , default=10 , help='Number of Monte Carlo backtracks for trajectory generation')
parser.add_argument('--pointgen' , type=str , default='rand' , help='Method for symbol placement. One of "hammersley", "rand"')
parser.add_argument('--save-figures' , dest='save_figures' , action='store_true' , help='Save figures to file')
parser.add_argument('--output-dir' , type=str , default='output' , help='Output directory')
parser.add_argument('--max-i' , type=int , default=0 , help='Number of expansions per layer before ascent')
parser.add_argument('--nscales' , type=int , default=5 , help='Number of scales')
parser.set_defaults(save_figures=False)
args = parser.parse_args()
main(args)