-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
230 lines (166 loc) · 6.15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env/python
# SPDX-License-Identifier: MIT
# See LICENSE file for additional copyright and license details.
import datetime
import numpy as np
import h5py
import modules
import pointgen
class Config:
def __init__(self):
self.d = dict()
def __item__(self, itm):
return self.d[itm]
class ExpansionItem:
def __init__(self, scale, tick, start, targets, active_symbols, hits):
self.scale = scale
self.tick = tick
self.start = start
self.targets = targets
self.active_symbols = active_symbols
self.hits = hits
class BacktrackItem:
def __init__(self, scale, ss, ps):
self.scale = scale
self.ss = ss # symbols
self.ps = ps # parents
def __repr__(self):
return "{}: ({}, {})".format(self.scale, self.ss, self.ps)
class SubgoalsItem:
def __init__(self, scale, subgoals):
self.scale = scale
self.subgoals = subgoals
def __repr__(self):
return "{}: {}".format(self.scale, self.subgoals)
class SearchItem:
def __init__(self, scale, starts, targets, hits):
self.scale = scale
self.starts = starts
self.targets = targets
self.hits = hits
class Recorder:
def __init__(self, nscales=1):
self.expansions = [list() for n in range(nscales)]
self.backtracks = [list() for n in range(nscales)]
self.searches = [list() for n in range(nscales)]
self.subgoals = [None for n in range(nscales)]
def record_expansion(self, scale, tick, start, targets, active_symbols, hits):
self.expansions[scale].append(ExpansionItem(scale, tick, start, targets, active_symbols, hits))
def record_backtrack(self, scale, ss, ps):
self.backtracks[scale].append(BacktrackItem(scale, ss, ps))
def record_subgoals(self, scale, subgoals):
self.subgoals[scale] = SubgoalsItem(scale, subgoals)
def record_search(self, scale, starts, targets, hits):
self.searches[scale].append(SearchItem(scale, starts, targets, hits))
def save_trajectory_to_hdf5(cfg, Xs, Ys, verbose=True):
filepath = "{}/{}".format(cfg.datadir, cfg.filename)
if verbose:
print("Saving results to '{}'".format(filepath))
# store results to file
f5 = h5py.File(filepath, 'w')
# meta information
f5.attrs['datetime'] = str(datetime.datetime.now())
# environment and simulation setup
f5.attrs['world_type'] = 'scenes.Circular'
f5.attrs['world_radius'] = cfg.world_radius
f5.attrs['platform_x'] = cfg.platform_x
f5.attrs['platform_y'] = cfg.platform_y
f5.attrs['platform_radius'] = cfg.platform_radius
f5.attrs['dt'] = cfg.dt
f5.attrs['maxticks'] = cfg.maxticks
# data
f5.create_dataset('agent_x', data=Xs)
f5.create_dataset('agent_y', data=Ys)
# done writing
f5.close()
def load_trajectory_hdf5(filepath, verbose=True):
if verbose:
print("Loading results from '{}'".format(filepath))
# initialize return values
cfg = Config()
Xs = []
Ys = []
# open file and read meta information
f5 = h5py.File(filepath, 'r')
cfg.creation_date = f5.attrs['datetime']
# read environment and simulation data
cfg.world_type = f5.attrs['world_type']
cfg.world_radius = f5.attrs['world_radius']
cfg.platform_x = f5.attrs['platform_x']
cfg.platform_y = f5.attrs['platform_y']
cfg.platform_radius = f5.attrs['platform_radius']
cfg.dt = f5.attrs['dt']
cfg.maxticks = f5.attrs['maxticks']
# data
Xs = f5['agent_x']
Ys = f5['agent_y']
# don't close file here
return cfg, Xs, Ys
def gen_symbols(W, H, N=500, method='hammersley', mindist=0.035, nscales=1):
"""Generate N symbols.
Args:
W(int): width of the environment
H(int): height of the environment
N(int): number of symbols to generate
method(string): method by which the symbol locations are generated. One
of 'hammersley', 'rmind1', 'rmind2', 'runif'.
Returns:
[]: List of Symbol objects
"""
if method == 'runif':
symbol_coords = pointgen.random_uniform(N, W, H)
if method == 'rmind1':
symbol_coords = pointgen.random_mindist(N, mindist, W, H)
if method == 'rmind2':
symbol_coords = pointgen.random_mindist(100, 0.08, W, H)
if method == 'hammersley':
symbol_coords = pointgen.hammersley(N, W, H)
return [modules.Symbol(symbol_coords[i, :], nscales=nscales) for i in range(symbol_coords.shape[0])]
def target_reached(symbols, target):
"""Test if the target area was already found"""
for s in symbols:
if s in targets:
return True
return False
def sample_unit_sphere(radius):
"""Retrieve a normally distributed sample from the unit sphere"""
l = np.sqrt(np.random.uniform(0, radius))
a = np.pi * np.random.uniform(0, 2)
x = l * np.cos(a)
y = l * np.sin(a)
return x, y
def get_closest_symbol(symbols, coord):
"""Return the symbol with shortest Euclidean distance to coord"""
ret_s = 0
ret_c = np.linalg.norm(coord - symbols[0].coord)
for i in range(1, len(symbols)):
c = np.linalg.norm(coord - symbols[i].coord)
if c <= ret_c:
ret_c = c
ret_s = i
return ret_s, ret_c
def get_symbol_id(symbols, s):
for i in range(len(symbols)):
if symbols[i] == s:
return i
return -1
def get_transition_obj(layers, symbols, scale, sid):
t_id = symbols[sid].t[scale]
return layers[scale].ts[t_id]
def get_parent_obj(layers, scale, symbols, s, origin, strategy='rand'):
if strategy == 'rand':
return symbols[s.getRandomParent()]
elif strategy == 'mean':
# strategy to select symbol closest to grid field center
pid = s.getRandomParent()
if pid == origin:
return symbols[pid]
parent_transition = symbols[pid].t[scale]
transition_coord = layers[scale].ts[parent_transition].coord
sid, _ = utils.get_closest_symbol(symbols, transition_coord)
return symbols[sid]
else:
print("Unknown parent selection strategy")
sys.exit(-1)
def intersect(l1, l2):
return list(set(l1) & set(l2))