-
Notifications
You must be signed in to change notification settings - Fork 87
/
convert_treccar_to_tfrecord.py
263 lines (206 loc) · 8.12 KB
/
convert_treccar_to_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""Converts TREC-CAR queries and corpus into TFRecord that will be consumed by BERT.
The main necessary inputs are:
- Paragraph Corpus (CBOR file)
- Pairs of Query-Relevant Paragraph (called qrels in TREC's nomenclature)
- Pairs of Query-Candidate Paragraph (called run in TREC's nomenclature)
The outputs are 3 TFRecord files, for training, dev and test.
"""
import collections
import json
import os
import re
import tensorflow as tf
import time
# local modules
import tokenization
import trec_car_classes
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string(
"output_folder", None,
"Folder where the TFRecord files will be writen.")
flags.DEFINE_string(
"vocab_file",
"./data/bert/uncased_L-24_H-1024_A-16/vocab.txt",
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"corpus", "./data/dedup.articles-paragraphs.cbor",
"Path to the cbor file containing the Wikipedia paragraphs.")
flags.DEFINE_string(
"qrels_train", "./data/train.qrels",
"Path to the topic / relevant doc ids pairs for training.")
flags.DEFINE_string(
"qrels_dev", "./data/dev.qrels",
"Path to the topic / relevant doc ids pairs for dev.")
flags.DEFINE_string(
"qrels_test", "./data/test.qrels",
"Path to the topic / relevant doc ids pairs for test.")
flags.DEFINE_string(
"run_train", "./data/train.run",
"Path to the topic / candidate doc ids pairs for training.")
flags.DEFINE_string(
"run_dev", "./data/dev.run",
"Path to the topic / candidate doc ids pairs for dev.")
flags.DEFINE_string(
"run_test", "./data/test.run",
"Path to the topic / candidate doc ids pairs for test.")
flags.DEFINE_integer(
"max_seq_length", 512,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_integer(
"max_query_length", 64,
"The maximum query sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated.")
flags.DEFINE_integer(
"num_train_docs", 10,
"The number of docs per query for the training set.")
flags.DEFINE_integer(
"num_dev_docs", 10,
"The number of docs per query for the development set.")
flags.DEFINE_integer(
"num_test_docs", 1000,
"The number of docs per query for the test set.")
def convert_dataset(data, corpus, set_name, tokenizer):
output_path = FLAGS.output_folder + '/dataset_' + set_name + '.tf'
print('Converting {} to tfrecord'.format(set_name))
start_time = time.time()
random_title = list(corpus.keys())[0]
with tf.python_io.TFRecordWriter(output_path) as writer:
for i, query in enumerate(data):
qrels, doc_titles = data[query]
query = query.replace('enwiki:', '')
query = query.replace('%20', ' ')
query = query.replace('/', ' ')
query = tokenization.convert_to_unicode(query)
if i % 1000 == 0:
print('query', query)
query_ids = tokenization.convert_to_bert_input(
text=query,
max_seq_length=FLAGS.max_query_length,
tokenizer=tokenizer,
add_cls=True)
query_ids_tf = tf.train.Feature(
int64_list=tf.train.Int64List(value=query_ids))
if set_name == 'train':
max_docs = FLAGS.num_train_docs
elif set_name == 'dev':
max_docs = FLAGS.num_dev_docs
elif set_name == 'test':
max_docs = FLAGS.num_test_docs
doc_titles = doc_titles[:max_docs]
# Add fake docs so we always have max_docs per query.
doc_titles += max(0, max_docs - len(doc_titles)) * [random_title]
labels = [
1 if doc_title in qrels else 0
for doc_title in doc_titles
]
doc_token_ids = [
tokenization.convert_to_bert_input(
text=tokenization.convert_to_unicode(corpus[doc_title]),
max_seq_length=FLAGS.max_seq_length - len(query_ids),
tokenizer=tokenizer,
add_cls=False)
for doc_title in doc_titles
]
for rank, (doc_token_id, label) in enumerate(zip(doc_token_ids, labels)):
doc_ids_tf = tf.train.Feature(
int64_list=tf.train.Int64List(value=doc_token_id))
labels_tf = tf.train.Feature(
int64_list=tf.train.Int64List(value=[label]))
len_gt_titles_tf = tf.train.Feature(
int64_list=tf.train.Int64List(value=[len(qrels)]))
features = tf.train.Features(feature={
'query_ids': query_ids_tf,
'doc_ids': doc_ids_tf,
'label': labels_tf,
'len_gt_titles': len_gt_titles_tf,
})
example = tf.train.Example(features=features)
writer.write(example.SerializeToString())
if i % 1000 == 0:
print('wrote {}, {} of {} queries'.format(set_name, i, len(data)))
time_passed = time.time() - start_time
est_hours = (len(data) - i) * time_passed / (max(1.0, i) * 3600)
print('estimated total hours to save: {}'.format(est_hours))
def load_qrels(path):
"""Loads qrels into a dict of key: topic, value: list of relevant doc ids."""
qrels = collections.defaultdict(set)
with open(path) as f:
for i, line in enumerate(f):
topic, _, doc_title, relevance = line.rstrip().split(' ')
if int(relevance) >= 1:
qrels[topic].add(doc_title)
if i % 1000000 == 0:
print('Loading qrels {}'.format(i))
return qrels
def load_run(path):
"""Loads run into a dict of key: topic, value: list of candidate doc ids."""
# We want to preserve the order of runs so we can pair the run file with the
# TFRecord file.
run = collections.OrderedDict()
with open(path) as f:
for i, line in enumerate(f):
topic, _, doc_title, rank, _, _ = line.split(' ')
if topic not in run:
run[topic] = []
run[topic].append((doc_title, int(rank)))
if i % 1000000 == 0:
print('Loading run {}'.format(i))
# Sort candidate docs by rank.
sorted_run = collections.OrderedDict()
for topic, doc_titles_ranks in run.items():
sorted(doc_titles_ranks, key=lambda x: x[1])
doc_titles = [doc_titles for doc_titles, _ in doc_titles_ranks]
sorted_run[topic] = doc_titles
return sorted_run
def load_corpus(path):
"""Loads TREC-CAR's paraghaphs into a dict of key: title, value: paragraph."""
corpus = {}
start_time = time.time()
APPROX_TOTAL_PARAGRAPHS = 30000000
with open(path, 'rb') as f:
for i, p in enumerate(trec_car_classes.iter_paragraphs(f)):
para_txt = [elem.text if isinstance(elem, trec_car_classes.ParaText)
else elem.anchor_text
for elem in p.bodies]
corpus[p.para_id] = ' '.join(para_txt)
if i % 10000 == 0:
print('Loading paragraph {} of {}'.format(i, APPROX_TOTAL_PARAGRAPHS))
time_passed = time.time() - start_time
hours_remaining = (
APPROX_TOTAL_PARAGRAPHS - i) * time_passed / (max(1.0, i) * 3600)
print('Estimated hours remaining to load corpus: {}'.format(
hours_remaining))
return corpus
def merge(qrels, run):
"""Merge qrels and runs into a single dict of key: topic,
value: tuple(relevant_doc_ids, candidate_doc_ids)"""
data = collections.OrderedDict()
for topic, candidate_doc_ids in run.items():
data[topic] = (qrels[topic], candidate_doc_ids)
return data
def main():
print('Loading Tokenizer...')
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=True)
if not os.path.exists(FLAGS.output_folder):
os.mkdir(FLAGS.output_folder)
print('Loading Corpus...')
corpus = load_corpus(FLAGS.corpus)
for set_name, qrels_path, run_path in [
('train', FLAGS.qrels_train, FLAGS.run_train),
('dev', FLAGS.qrels_dev, FLAGS.run_dev),
('test', FLAGS.qrels_test, FLAGS.run_test)]:
print('Converting {}'.format(set_name))
qrels = load_qrels(path=qrels_path)
run = load_run(path=run_path)
data = merge(qrels=qrels, run=run)
convert_dataset(data=data,
corpus=corpus,
set_name=set_name,
tokenizer=tokenizer)
print('Done!')
if __name__ == '__main__':
main()