-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_summarization.py
982 lines (879 loc) · 45.2 KB
/
run_summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import os
import sys
import json
import logging
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Optional
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import load_dataset, load_metric
import transformers
from filelock import FileLock
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
LEDForConditionalGeneration
)
from transformers.file_utils import is_offline_mode
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.6.0")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
verbose: bool = field(
default=False,
metadata={
"help": "Print info messages from inside model."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default='document',
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
question_column: Optional[str] = field(
default='questions',
metadata={"help": "The name of the column in the datasets containing the question (for query-driven summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
"(a jsonlines or csv file)."
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
},
)
prediction_out_file: Optional[str] = field(
default="generated_predictions.txt",
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
},
)
include_info_in_prediction_file: Optional[bool] = field(
default=False,
metadata={
"help": "If true, include reference and part of input in the prediction file and save results as a jsonl file." "(a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_stories: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or learning curves with QFS, truncate the number of training *stories* to this "
"value if set."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"), # nb: persian
"wiki_asp": ("inputs", "targets"),
"ccdv/arxiv-summarization": ("article", "abstract"),
"ccdv/govreport-summarization": ("report", "summary"),
"qds": ("story", "summary1"), # general plot summary
}
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sanity checks.
if data_args.source_prefix is None and model_args.model_name_or_path in [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
"`--source_prefix 'summarize: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
#format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
format="%(asctime)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
print("loading data")
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name,
cache_dir=model_args.cache_dir)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
config.verbose = model_args.verbose
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
sep_tok = tokenizer.sep_token if tokenizer.sep_token is not None else ""
sep_tok_id = tokenizer.sep_token_id
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# hack
#model.config.gradient_checkpointing = True # for saving memory
#model.config.use_cache = False # for saving memory
model.config.early_stopping = True
model.config.no_repeat_ngram_story = 3
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = datasets["train"].column_names
elif training_args.do_eval:
column_names = datasets["validation"].column_names
elif training_args.do_predict:
column_names = datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.question_column is not None:
question_column = data_args.question_column
if question_column not in column_names:
raise ValueError(
f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}"
)
else:
question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[summary_column]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
if isinstance(model, LEDForConditionalGeneration):
# from https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing
# this assumes we're padding to the same length for all attention
model_inputs["global_attention_mask"] = len(model_inputs["input_ids"]) * \
[[0 for _ in range(len(model_inputs["input_ids"][0]))]]
# sets all first entries to 1 b/c it's a reference
model_inputs["global_attention_mask"][0][0] = 1
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def preprocess_wiki_asp(examples):
inputs = examples[text_column] # list of sentences
topics_and_targets = examples[summary_column] # list of (topic, target)s
all_inputs = []
all_targets = []
for inp, ex_topics_and_targets in zip(inputs, topics_and_targets):
full_inp = " ".join(inp)
for topic, target in ex_topics_and_targets:
all_inputs.append(" ".join([topic, full_inp, topic]))
all_targets.append(target)
model_inputs = tokenizer(all_inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(all_targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def preprocess_all_qds(examples):
# preprocess function used for the non-extracted QDS task
model_inputs = []
all_inputs = [] # input documents
all_questions = [] # questions
all_targets = [] # target sequences
passage_ids = [] # metadata
question_ns = [] # metadata
response_ids = [] # metadata
for response_idx, responses in enumerate(examples['responses']):
for response in responses:
n_responses = len(response['summaries'])
all_inputs += [examples[text_column][response_idx]] * n_responses
all_questions += examples[question_column][response_idx]
all_targets += response['summaries']
response_ids += [response['uid']] * n_responses
passage_id = examples['metadata'][response_idx]['passage_id']
passage_ids += [passage_id] * n_responses
if 'question_n' in examples['metadata'][response_idx]:
question_ns += [f"{passage_id}-{question_n}" for question_n in examples['metadata'][response_idx]['question_n']]
else:
question_ns += [f"{passage_id}-{i}" for i in range(n_responses)]
assert len(all_targets) == len(all_inputs), "Different number of targets and inputs!"
assert len(all_targets) == len(all_questions), "Different number of targets and questions!"
assert len(all_targets) == len(passage_ids), "Different number of targets and passage ids"
assert len(all_targets) == len(question_ns), "Different number of targets and question #s"
assert len(all_targets) == len(response_ids), "Different number of targets and response ids"
# appending question leads to truncation
#inputs = [prefix + inp + question for inp, qst in zip(inputs, questions)]
inputs = [" ".join([prefix, qst, sep_tok, inp, sep_tok, qst]) for inp, qst in zip(all_inputs, all_questions)]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
if isinstance(model, LEDForConditionalGeneration) and True:
# create global attention masks to attend to questions
# I'm not sure how to vectorize this in standard python
global_attns = []
for model_input, attn_mask in zip(model_inputs.input_ids, model_inputs.attention_mask):
idxs = [idx for idx, tok in enumerate(model_input) if tok == sep_tok_id]
assert len(idxs) in [3, 2], f"Expected 2-3 sep tokens, found {len(sep_tok_idxs)}!"
global_attn = [0] * len(model_input)
global_attn[1 :idxs[0] - 1] = [1] * (idxs[0] - 2) # don't attend to sos or sep
if len(idxs) == 3:
assert idxs[0] - 2 == idxs[2] - idxs[1] - 1, "Question tokenized to different lengths!"
global_attn[idxs[1] + 1: idxs[2]] = [1] * (idxs[2] - idxs[1] - 1)
assert len(global_attn) == len(model_input), "Found different length for input ID and global mask!"
assert len(global_attn) == len(attn_mask), "Found different length for input ID and attention mask!"
global_attns.append(global_attn)
model_inputs["global_attention_mask"] = global_attns
elif isinstance(model, LEDForConditionalGeneration): # pad first <s> token
global_attns = [[0] * len(i) for i in model_inputs]
for mask in global_attns:
mask[0] = 1
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(all_targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
model_inputs["full_refs"] = all_targets
model_inputs["passage_ids"] = passage_ids
model_inputs["question_ns"] = question_ns
model_inputs["response_ids"] = response_ids
return model_inputs
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
# control dataset size (# examples)
if "qds" in data_args.train_file and data_args.max_train_stories:
train_dataset = train_dataset.shuffle()
train_dataset = train_dataset.select(range(data_args.max_train_stories))
logger.info(f"Adjusting # train stories to {data_args.max_train_stories}")
if data_args.max_train_samples is not None and (data_args.train_file is None or "qds" not in data_args.train_file):
if data_args.max_train_samples > len(train_dataset):
data_args.max_train_samples = len(train_dataset)
logger.info(f"max_train_samples > dataset size ({len(train_dataset)})")
train_dataset = train_dataset.select(range(data_args.max_train_samples))
logger.info(f"Adjusting train dataset size to {data_args.max_train_samples}")
if data_args.train_file is not None:
preprocess_fn = preprocess_all_qds
logger.info(f"Loading training data from {data_args.train_file}")
else:
if data_args.dataset_name == "wiki_asp":
preprocess_fn = preprocess_wiki_asp
else:
preprocess_fn = preprocess_function
logger.info(f"Loading training data for {data_args.dataset_name}")
train_dataset = train_dataset.map(
preprocess_fn,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Tokenizing train data..."
)
if data_args.max_train_samples is not None:
if data_args.max_train_samples > len(train_dataset):
data_args.max_train_samples = len(train_dataset)
logger.info(f"max_train_samples > dataset size ({len(train_dataset)})")
train_dataset = train_dataset.select(range(data_args.max_train_samples))
logger.info(f"Adjusting train dataset size to {data_args.max_train_samples}")
if isinstance(model, LEDForConditionalGeneration):
train_dataset.set_format(columns=["input_ids", "attention_mask", "global_attention_mask", "labels"])
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None and (data_args.validation_file is None or "qds" not in data_args.validation_file):
if data_args.max_eval_samples > len(eval_dataset):
data_args.max_eval_samples = len(eval_dataset)
logger.info(f"max_eval_samples > dataset size ({len(eval_dataset)})")
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
logger.info(f"Adjusting validation dataset size to {data_args.max_eval_samples}")
if data_args.validation_file is not None:
preprocess_fn = preprocess_all_qds
logger.info(f"Loading eval data for {data_args.validation_file}")
else:
if data_args.dataset_name == "wiki_asp":
preprocess_fn = preprocess_wiki_asp
else:
preprocess_fn = preprocess_function
logger.info(f"Loading eval data for {data_args.dataset_name}")
eval_dataset = eval_dataset.map(
preprocess_fn,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Tokenizing eval data..."
)
if data_args.max_eval_samples is not None:
if data_args.max_eval_samples > len(eval_dataset):
data_args.max_eval_samples = len(eval_dataset)
logger.info(f"max_eval_samples > dataset size ({len(eval_dataset)})")
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
logger.info(f"Adjusting validation dataset size to {data_args.max_eval_samples}")
if isinstance(model, LEDForConditionalGeneration):
eval_dataset.set_format(columns=["input_ids", "attention_mask", "global_attention_mask", "labels"])
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.test_file is not None:
preprocess_fn = preprocess_all_qds
logger.info(f"Loading prediction data from {data_args.test_file}")
else:
if data_args.dataset_name == "wiki_asp":
preprocess_fn = preprocess_wiki_asp
else:
preprocess_fn = preprocess_function
logger.info(f"Loading prediction data for {data_args.dataset_name}")
predict_dataset = predict_dataset.map(
preprocess_fn,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Tokenizing prediction data..."
)
if data_args.max_predict_samples is not None:
if data_args.max_predict_samples > len(predict_dataset):
data_args.max_predict_samples = len(predict_dataset)
logger.info(f"max_predict_samples > dataset size ({len(predict_dataset)})")
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
logger.info(f"Adjusting test/predict dataset size to {data_args.max_predict_samples}")
if isinstance(model, LEDForConditionalGeneration):
predict_dataset.set_format(columns=["input_ids", "attention_mask", "global_attention_mask", "labels"])
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Metrics
# TODO(AW): install comet?
# NOTE(AW): BLEURT is really trained for this setting and the scores are really bad
# BLEU seems redundant with ROUGE
#metric_names = ["bertscore", "bleurt", "bleu", "google_bleu", "meteor", "rouge"]
def _load_metric(metric_name):
if metric_name == "meteor":
return load_metric("utils/metrics/multi_meteor")
elif metric_name == "rouge":
return load_metric("utils/metrics/multi_rouge")
else:
return load_metric(metric_name)
metric_names = ["bertscore", "meteor", "rouge"]
metrics = [_load_metric(metric_name) for metric_name in metric_names]
logger.info(f"Evaluating with metrics {','.join(metric_names)}")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
all_results = {}
for metric in metrics:
if metric.name == "bert_score":
result = metric.compute(predictions=decoded_preds, references=decoded_labels, lang="en")
for k in ['precision', 'recall', 'f1']:
all_results[f"{metric.name}_{k}"] = np.mean(result[k]) * 100
for k in ['hashcode']:
all_results[f"{metric.name}_{k}"] = result[k]
elif metric.name in ["bleu", "google_bleu"]:
# options: smoothing (default false)
tokenized_preds = [tokenizer.tokenize(p) for p in decoded_preds]
tokenized_refs = [[tokenizer.tokenize(r)] for r in decoded_labels]
result = metric.compute(predictions=tokenized_preds, references=tokenized_refs)
if metric.name == "bleu":
for k in ['bleu', 'precisions']:
all_results[f"{metric.name}_{k}"] = np.mean(result[k]) * 100
for k in ['brevity_penalty']:
all_results[f"{metric.name}_{k}"] = result[k]
else:
for k, v in result.items():
all_results[f"{metric.name}_{k}"] = np.mean(v) * 100
elif metric.name == "rouge":
result = metric.compute(predictions=decoded_preds,
references=[[l] for l in decoded_labels],
use_stemmer=True)
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
for k, v in result.items():
all_results[f"{metric.name}_{k}"] = np.mean(v)
else: # bleurt, meteor
result = metric.compute(predictions=decoded_preds, references=[[l] for l in decoded_labels])
for k, v in result.items():
all_results[f"{metric.name}_{k}"] = np.mean(v) * 100
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
all_results["gen_len"] = np.mean(prediction_lens)
#all_results = {k: round(v, 4) for k, v in all_results.items()}
return all_results
def compute_multireference_metrics(references, predictions, example_ids, metric_prefix=""):
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
if not isinstance(references[0], str):
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
references = np.where(references != -100, references, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(references, skip_special_tokens=True)
else:
decoded_labels = references
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
# Sort by example ids
ex2pred = {}
ex2refs = defaultdict(list)
for pred, ref, ex_id in zip(decoded_preds, decoded_labels, example_ids):
if ex_id in ex2pred:
assert pred == ex2pred[ex_id], "Different predictions for the same input!"
else:
ex2pred[ex_id] = pred
ex2refs[ex_id].append(ref)
unique_example_ids = list(set(example_ids))
grouped_decoded_preds = [ex2pred[ex] for ex in unique_example_ids]
grouped_decoded_labels = [ex2refs[ex] for ex in unique_example_ids]
all_results = {}
for metric in metrics:
if metric.name == "bert_score":
result = metric.compute(predictions=grouped_decoded_preds,
references=grouped_decoded_labels,
lang="en")
for k in ['precision', 'recall', 'f1']:
all_results[f"{metric.name}_{k}"] = np.mean(result[k]) * 100
for k in ['hashcode']:
all_results[f"{metric.name}_{k}"] = result[k]
elif metric.name in ["bleu", "google_bleu"]:
# options: smoothing (default false)
tokenized_preds = [tokenizer.tokenize(p) for p in decoded_preds]
tokenized_refs = [[[tokenizer.tokenize(r)] for r in rr] for rr in decoded_labels]
result = metric.compute(predictions=tokenized_preds, references=tokenized_refs)
if metric.name == "bleu":
for k in ['bleu', 'precisions']:
all_results[f"{metric.name}_{k}"] = np.mean(result[k]) * 100
for k in ['brevity_penalty']:
all_results[f"{metric.name}_{k}"] = result[k]
else:
for k, v in result.items():
all_results[f"{metric.name}_{k}"] = np.mean(v) * 100
elif metric.name == "rouge":
result = metric.compute(predictions=grouped_decoded_preds,
references=grouped_decoded_labels,
use_stemmer=True)
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
for k, v in result.items():
all_results[f"{metric.name}_{k}"] = np.mean(v)
else: # bleurt, meteor
result = metric.compute(predictions=grouped_decoded_preds, references=grouped_decoded_labels)
for k, v in result.items():
all_results[f"{metric.name}_{k}"] = np.mean(v) * 100
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
all_results["gen_len"] = np.mean(prediction_lens)
if metric_prefix is not None:
new_results = {}
for k, v in all_results.items():
new_results[f'{metric_prefix}_{k}'] = v
all_results = new_results
return all_results
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
train_metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
train_metrics["train_samples"] = min(max_train_samples, len(train_dataset))
train_metrics["train_final_loss"] = train_result.training_loss
trainer.log_metrics("train", train_metrics)
trainer.save_metrics("train", train_metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
eval_metrics = trainer.evaluate(
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
eval_metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", eval_metrics)
trainer.save_metrics("eval", eval_metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(
predict_dataset,
metric_key_prefix="predict",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
if "qds" in data_args.test_file:
# multireference metrics
predict_metrics = compute_multireference_metrics(references=predict_dataset['full_refs'],
predictions=predict_results.predictions,
example_ids=predict_dataset['question_ns'],
metric_prefix="predict"
)
for k in ['predict_loss']:
predict_metrics[k] = predict_results.metrics[k]
else:
predict_metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
predict_metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", predict_metrics)
trainer.save_metrics("predict", predict_metrics)
# save predictions
if trainer.is_world_process_zero() and training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip().replace("\n"," ") for pred in predictions]
if data_args.include_info_in_prediction_file:
refs = predict_dataset['full_refs']
inps = [tokenizer.decode(inp[:100], skip_special_tokens=True, clean_up_tokenization_space=True) for inp in predict_dataset['input_ids']]
output_prediction_file = os.path.join(training_args.output_dir, data_args.prediction_out_file)
with open(output_prediction_file, "w") as writer:
if data_args.include_info_in_prediction_file:
assert len(predictions) == len(refs), "Different number of predictions and references!"
assert len(predictions) == len(inps), "Different number of predictions and inputs!"
for idx, (pred, ref, inp) in enumerate(zip(predictions, refs, inps)):
out_d = {
'prediction': pred, 'reference': ref, '(partial) input': inp,
'passage_id': predict_dataset['passage_ids'][idx],
'question_n': predict_dataset['question_ns'][idx],
'response_id': predict_dataset['response_ids'][idx],
}
writer.write(f"{json.dumps(out_d)}\n")
else:
writer.write("\n".join(predictions))
logging.info(f"Wrote predictions to {output_prediction_file}")
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()