forked from Picovoice/wake-word-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
113 lines (88 loc) · 3.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#
# Copyright 2018 Picovoice Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from enum import Enum
import numpy as np
import soundfile
class Datasets(Enum):
DEMAND = 'DEMAND'
KEYWORD = 'Keyword'
LIBRI_SPEECH = "LibriSpeech"
class Dataset(object):
def __init__(self):
self._random = np.random.RandomState(seed=778)
def get(self, index, dtype=np.int16):
pcm, sample_rate = soundfile.read(self._paths[index], dtype=dtype)
assert sample_rate == self.sample_rate()
return pcm
def random(self, dtype=np.int16):
return self.get(self._random.randint(low=0, high=self.size()), dtype=dtype)
def size(self):
return len(self._paths)
@staticmethod
def sample_rate():
return 16000
@classmethod
def create(cls, dataset, path, **kwargs):
if dataset is Datasets.DEMAND:
return DEMANDDataset(path)
elif dataset is Datasets.KEYWORD:
return KeywordDataset(path)
elif dataset is Datasets.LIBRI_SPEECH:
return LibriSpeechDataset(path, *kwargs)
else:
raise ValueError("cannot create dataset of type '%s'", dataset.value)
@property
def _paths(self):
raise NotImplementedError()
class DEMANDDataset(Dataset):
def __init__(self, path):
super(DEMANDDataset, self).__init__()
self.__paths = list()
for noise_type in os.listdir(path):
self.__paths.append(os.path.join(path, '%s/ch01.wav' % noise_type))
self.__paths.sort()
@property
def _paths(self):
return self.__paths
class KeywordDataset(Dataset):
def __init__(self, path):
super(KeywordDataset, self).__init__()
self.__paths = list()
for x in os.listdir(path):
self.__paths.append(os.path.join(path, x))
self.__paths.sort()
@property
def _paths(self):
return self.__paths
class LibriSpeechDataset(Dataset):
def __init__(self, path, exclude_word):
super(LibriSpeechDataset, self).__init__()
self.__paths = list()
for speaker_id in os.listdir(path):
speaker_dir = os.path.join(path, speaker_id)
for chapter_id in os.listdir(speaker_dir):
chapter_dir = os.path.join(speaker_dir, chapter_id)
transcript_path = os.path.join(chapter_dir, '%s-%s.trans.txt' % (speaker_id, chapter_id))
with open(transcript_path) as f:
for line in f.readlines():
flac_basename, transcript = line.split(' ', maxsplit=1)
if exclude_word not in transcript:
self.__paths.append(os.path.join(chapter_dir, '%s.flac' % flac_basename))
self.__paths.sort()
@property
def _paths(self):
return self.__paths