-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_prompts.py
51 lines (43 loc) · 2.16 KB
/
generate_prompts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from rl_jailbreak.models.model import load_generator
from transformers import AutoTokenizer
import pandas as pd
import torch
from tqdm import tqdm
models = {
"SFT-gpt2-xl": "sft_results/gpt2-xl/checkpoint-6750",
"SFT-gpt2-l": "sft_results/gpt2-large/checkpoint-9300",
"SFT-gpt2-m": "sft_results/gpt2-medium/checkpoint-6675",
"RL-vs-llama-gpt2-xl": "results/PPO-baseline-2023-12-10-08-09-01-EPOCH-0-ITER-100-BATCHSIZE-20",
"RL-vs-llama-gpt2-l": "results/PPO-baseline-2023-12-10-08-08-58-EPOCH-0-ITER-25-BATCHSIZE-20",
"RL-vs-llama-gpt2-m": "results/PPO-baseline-2023-12-10-08-08-44-EPOCH-0-ITER-150-BATCHSIZE-20",
"RL-vs-zephyr-gpt2-xl": "results/PPO-baseline-2023-12-10-08-09-01-EPOCH-0-ITER-100-BATCHSIZE-20",
"RL-vs-zephyr-gpt2-l": "results/PPO-baseline-2023-12-10-08-08-58-EPOCH-0-ITER-25-BATCHSIZE-20",
"RL-vs-zephyr-gpt2-m": "results/PPO-baseline-2023-12-10-08-32-03-EPOCH-0-ITER-125-BATCHSIZE-20",
}
generator_tokenizer = AutoTokenizer.from_pretrained("gpt2")
generator_kwargs = {
"min_length": -1, # don't ignore the EOS token (see above)
"top_k": 0.0, # no top-k sampling
"top_p": 1.0, # no nucleus sampling
"do_sample": True, # yes, we want to sample
"pad_token_id": generator_tokenizer.eos_token_id, # most decoder models don't have a padding token - use EOS token instead
"max_new_tokens": 250, # specify how many tokens you want to generate at most
"min_new_tokens": 150,
}
data = pd.DataFrame(columns=["model_name", "sample_idx", "text"])
for model_name, model_path in models.items():
print("Generating prompts for", model_name, "from", model_path)
generator = load_generator(model_path)
batch_data = {
"model_name": [],
"sample_idx": [],
"text": []
}
for i in tqdm(range(10)):
generator_output = generator.generate("You are", generator_kwargs)
batch_data["model_name"].append(model_name)
batch_data["sample_idx"].append(i)
batch_data["text"].append(generator_output)
data = pd.concat([data, pd.DataFrame(batch_data)], ignore_index=True)
print(data)
data.to_csv("testing/generator_prompts.csv")