forked from directvt/vtm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry.hpp
673 lines (637 loc) · 26.1 KB
/
geometry.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// Copyright (c) NetXS Group.
// Licensed under the MIT license.
#pragma once
#include "utf.hpp"
#include "generics.hpp"
#if defined(__linux__) || defined(__APPLE__)
#include <stdint.h>
#endif
namespace netxs
{
using fifo = generics::fifo<si32>;
// geometry: 2D point template.
template<class T = si32>
struct duplet
{
using type = T;
T x;
T y;
bool operator == (duplet const&) const = default;
constexpr duplet()
: x{ 0 },
y{ 0 }
{ }
constexpr duplet(T const& x, T const& y)
: x{ x },
y{ y }
{ }
constexpr duplet(duplet const& p)
: duplet{ p.x, p.y }
{ }
template<class D>
constexpr duplet(duplet<D> const& d)
: duplet{ static_cast<T>(d.x), static_cast<T>(d.y) }
{ }
constexpr duplet(fifo& queue)
: x{ queue(0) },
y{ queue(0) }
{ }
constexpr T& operator [] (si32 selector) { return selector ? y : x; }
constexpr T const& operator [] (si32 selector) const { return selector ? y : x; }
constexpr explicit operator bool() const { return x != 0 || y != 0; }
constexpr duplet& operator ++ () { x++; y++; return *this; }
constexpr duplet& operator -- () { x--; y--; return *this; }
constexpr duplet& operator = (duplet const& p) { x = p.x; y = p.y; return *this; }
constexpr void operator += (duplet const& p) { x += p.x; y += p.y; }
constexpr void operator -= (duplet const& p) { x -= p.x; y -= p.y; }
constexpr void operator *= (duplet const& p) { x *= p.x; y *= p.y; }
constexpr void operator /= (duplet const& p) { x /= p.x; y /= p.y; }
constexpr void operator %= (duplet const& p) { x %= p.x; y %= p.y; }
constexpr void operator -= (T i) { x -= i; y -= i; }
constexpr void operator += (T i) { x += i; y += i; }
constexpr void operator *= (T i) { x *= i; y *= i; }
constexpr void operator /= (T i) { x /= i; y /= i; }
constexpr void operator %= (T i) { x %= i; y %= i; }
constexpr bool operator < (T i) const { return x < i && y < i; }
constexpr bool operator > (T i) const { return x > i && y > i; }
constexpr duplet operator + (duplet const& p) const { return { x + p.x, y + p.y }; }
constexpr duplet operator - (duplet const& p) const { return { x - p.x, y - p.y }; }
constexpr duplet operator * (duplet const& p) const { return { x * p.x, y * p.y }; }
constexpr duplet operator / (duplet const& p) const { return { x / p.x, y / p.y }; }
constexpr duplet operator % (duplet const& p) const { return { x % p.x, y % p.y }; }
constexpr duplet operator - () const { return { -x,-y }; }
constexpr duplet operator & (T i) const { return { x & i, y & i }; }
constexpr duplet operator ~ () const { return { y, x }; }
///In C++11, signed shift left of a negative number is always undefined
//void operator>>= (T i) { x >>=i; y >>=i; }
//void operator<<= (T i) { x <<=i; y <<=i; }
///In C++11, signed shift left of a negative number is always undefined
//duplet operator << (T i) const { return { x << i, y << i }; }
//duplet operator >> (T i) const { return { x >> i, y >> i }; }
template<class D> auto constexpr operator / (D i) const { return duplet<D>{ x / i, y / i }; }
template<class D> auto constexpr operator + (D i) const { return duplet<D>{ x + i, y + i }; }
template<class D> auto constexpr operator - (D i) const { return duplet<D>{ x - i, y - i }; }
template<class D> auto constexpr operator * (D i) const { return duplet<D>{ x * i, y * i }; }
bool operator () (duplet const& p)
{
if (*this != p)
{
x = p.x;
y = p.y;
return true;
}
return faux;
}
duplet less(duplet const& what, duplet const& if_yes, duplet const& if_no) const
{
return { x < what.x ? if_yes.x : if_no.x,
y < what.y ? if_yes.y : if_no.y };
}
duplet equals(duplet const& what, duplet const& if_yes, duplet const& if_no) const
{
return { x == what.x ? if_yes.x : if_no.x,
y == what.y ? if_yes.y : if_no.y };
}
duplet less(T const& what, duplet const& if_yes, duplet const& if_no) const
{
return { x < what ? if_yes.x : if_no.x,
y < what ? if_yes.y : if_no.y };
}
duplet equals(T const& what, duplet const& if_yes, duplet const& if_no) const
{
return { x == what ? if_yes.x : if_no.x,
y == what ? if_yes.y : if_no.y };
}
duplet less(T const& what, T const& if_yes, T const& if_no) const
{
return { x < what ? if_yes : if_no,
y < what ? if_yes : if_no };
}
duplet equals(T const& what, T const& if_yes, T const& if_no) const
{
return { x == what ? if_yes : if_no,
y == what ? if_yes : if_no };
}
bool inside(duplet const& p) const
{
return (x > 0 ? (p.x >= 0 && p.x < x) : (p.x >= x && p.x < 0))
&& (y > 0 ? (p.y >= 0 && p.y < y) : (p.y >= y && p.y < 0));
}
duplet divround(type n) const { return { netxs::divround(x, n ), netxs::divround(y, n ) }; }
duplet divround(duplet const& p) const { return { netxs::divround(x, p.x), netxs::divround(y, p.y) }; }
duplet divupper(duplet const& p) const { return { netxs::divupper(x, p.x), netxs::divupper(y, p.y) }; }
auto str() const
{
return "{ " + std::to_string(x) + ", " + std::to_string(y) + " }";
}
friend auto& operator << (std::ostream& s, duplet const& p)
{
return s << "{ " << p.x << ", " << p.y << " }";
}
// Change endianness to LE.
friend auto letoh(duplet const& p)
{
return duplet{ netxs::letoh(p.x), netxs::letoh(p.y) };
}
friend auto min(duplet const& p1, duplet const& p2) { return duplet{ std::min(p1.x, p2.x), std::min(p1.y, p2.y) }; }
friend auto max(duplet const& p1, duplet const& p2) { return duplet{ std::max(p1.x, p2.x), std::max(p1.y, p2.y) }; }
friend auto round(duplet const& p) { return duplet{ std::round(p.x), std::round(p.y) }; }
friend auto abs(duplet const& p) { return duplet{ std::abs(p.x), std::abs(p.y) }; }
friend auto clamp(duplet const& p, duplet const& p1, duplet const& p2)
{
return duplet{ std::clamp(p.x, p1.x, p2.x),
std::clamp(p.y, p1.y, p2.y) };
}
static constexpr auto sort(duplet p1, duplet p2)
{
if (p1.x > p2.x) std::swap(p1.x, p2.x);
if (p1.y > p2.y) std::swap(p1.y, p2.y);
return std::pair{ p1, p2 };
}
};
// geometry: 2D point.
using twod = duplet<si32>;
static constexpr auto dot_00 = twod{ 0,0 };
static constexpr auto dot_01 = twod{ 0,1 };
static constexpr auto dot_10 = twod{ 1,0 };
static constexpr auto dot_11 = twod{ 1,1 };
static constexpr auto dot_22 = twod{ 2,2 };
static constexpr auto dot_21 = twod{ 2,1 };
static constexpr auto dot_33 = twod{ 3,3 };
static constexpr auto dot_mx = twod{ si32max / 2, si32max / 2 };
twod divround(twod p, si32 n) { return { divround(p.x, n ), divround(p.y, n ) }; }
twod divround(si32 n, twod p) { return { divround(n , p.x), divround(n , p.y) }; }
twod divround(twod n, twod p) { return { divround(n.x, p.x), divround(n.y, p.y) }; }
twod divupper(twod n, twod p) { return { divupper(n.x, p.x), divupper(n.y, p.y) }; }
}
namespace std
{
template<class T = netxs::si32> constexpr netxs::duplet<T> min(netxs::duplet<T> const& p1, netxs::duplet<T> const& p2) { return { std::min(p1.x, p2.x), std::min(p1.y, p2.y) }; }
template<class T = netxs::si32> constexpr netxs::duplet<T> max(netxs::duplet<T> const& p1, netxs::duplet<T> const& p2) { return { std::max(p1.x, p2.x), std::max(p1.y, p2.y) }; }
template<class T = netxs::si32> constexpr netxs::duplet<T> round(netxs::duplet<T> const& p) { return { std::round(p.x), std::round(p.y) }; }
template<class T = netxs::si32> constexpr netxs::duplet<T> abs(netxs::duplet<T> const& p) { return { std::abs(p.x), std::abs(p.y) }; }
template<class T = netxs::si32> constexpr netxs::duplet<T> clamp(netxs::duplet<T> const& p, netxs::duplet<T> const& p1, netxs::duplet<T> const& p2) { return { std::clamp(p.x, p1.x, p2.x), std::clamp(p.y, p1.y, p2.y) }; }
}
namespace netxs
{
// geometry: Rectangle.
struct rect
{
twod coor;
twod size;
bool operator == (rect const&) const = default;
explicit operator bool () const { return size.x != 0 && size.y != 0; }
auto center () const { return coor + size / 2; }
auto area () const { return size.x * size.y; }
twod map (twod p) const { return p - coor; }
rect shift (twod p) const { return { coor + p, size }; }
auto& shift_itself (twod p) { coor += p; return *this; }
rect operator | (rect r) const { return unite(r, *this); }
auto& operator += (rect r) { coor += r.coor; size += r.size; return *this; }
auto& operator -= (rect r) { coor -= r.coor; size -= r.size; return *this; }
// rect: Return rect trimmed by r.
template<bool Relative = faux>
constexpr rect trim(rect r) const
{
if constexpr (Relative) r.coor += coor;
auto r_apex = r.coor + r.size;
auto [min, max] = twod::sort(coor, coor + size);
r.coor = std::clamp(r.coor, min, max);
r.size = std::clamp(r_apex, min, max) - r.coor;
return r;
}
// rect: Trim by the specified rect.
template<bool Relative = faux>
constexpr auto& trimby(rect r)
{
if constexpr (Relative) coor += r.coor;
auto apex = coor + size;
auto [min, max] = twod::sort(r.coor, r.coor + r.size);
coor = std::clamp(coor, min, max);
size = std::clamp(apex, min, max) - coor;
return *this;
}
// rect: Return clamped point.
constexpr twod clamp(twod point) const
{
auto [min, max] = twod::sort(coor, coor + size);
return std::clamp(point, min, max - dot_11);
}
// rect: Is the point inside the rect.
constexpr bool hittest(twod p) const
{
auto test = faux;
if (size.x > 0) { auto t = p.x - coor.x; test = t >= 0 && t < size.x; }
else { auto t = p.x + coor.x; test = t >= size.x && t < 0; }
if (test)
{
if (size.y > 0) { auto t = p.y - coor.y; test = t >= 0 && t < size.y; }
else { auto t = p.y + coor.y; test = t >= size.y && t < 0; }
}
return test;
}
// rect: Return rect with specified orientation.
constexpr rect rotate(twod dir) const
{
auto sx = (dir.x ^ size.x) < 0;
auto sy = (dir.y ^ size.y) < 0;
return {{ sx ? coor.x + size.x : coor.x, sy ? coor.y + size.y : coor.y },
{ sx ? -size.x : size.x, sy ? -size.y : size.y }};
}
// rect: Change orientation.
constexpr auto& rotate_itself(twod dir)
{
if ((dir.x ^ size.x) < 0) { coor.x += size.x; size.x = -size.x; }
if ((dir.y ^ size.y) < 0) { coor.y += size.y; size.y = -size.y; }
return *this;
}
// rect: Return rect with top-left orientation.
constexpr rect normalize() const
{
auto sx = size.x < 0;
auto sy = size.y < 0;
return {{ sx ? coor.x + size.x : coor.x, sy ? coor.y + size.y : coor.y },
{ sx ? -size.x : size.x , sy ? -size.y : size.y }};
}
// rect: Set top-left orientation.
constexpr auto& normalize_itself()
{
if (size.x < 0) { coor.x += size.x; size.x = -size.x; }
if (size.y < 0) { coor.y += size.y; size.y = -size.y; }
return *this;
}
// rect: Intersect the rect with rect{ dot_00, edge }.
constexpr rect trunc(twod edge) const
{
auto r = rect{};
r.coor = std::clamp(coor, dot_00, edge);
r.size = std::clamp(size, -coor, edge - coor) + coor - r.coor;
return r;
}
// rect: Return circumscribed rect.
static constexpr rect unite(rect r1, rect r2)
{
r1.normalize_itself();
r2.normalize_itself();
auto tl = std::min(r1.coor, r2.coor);
auto br = std::max(r1.coor + r1.size, r2.coor + r2.size );
return { tl, br - tl};
}
// rect: Return true in case of normalized rectangles are overlapped.
constexpr bool overlap(rect r) const
{
return coor.x < r.coor.x + r.size.x
&& coor.y < r.coor.y + r.size.y
&& coor.x + size.x > r.coor.x
&& coor.y + size.y > r.coor.y;
}
// rect: To string.
auto str() const
{
return "{" + coor.str() + ", " + size.str() + "}";
}
friend auto& operator << (std::ostream& s, rect r)
{
return s << '{' << r.coor << ", " << r.size << '}';
}
// rect: Change endianness to LE.
friend auto letoh(rect r)
{
return rect{ netxs::letoh(r.coor), netxs::letoh(r.size) };
}
};
static constexpr auto rect_00 = rect{ dot_00,dot_00 };
static constexpr auto rect_11 = rect{ dot_00,dot_11 };
// geometry: A Parallelepiped, generated by three vectors.
struct cube
{
twod delta;
rect stuff;
};
// geometry: A rectangle represented by the four values: Left x-coor, Right x-coor, Top y-coor, Bottom y-coor.
struct side
{
si32 l, r, t, b;
constexpr side(si32 l = 0, si32 r = 0, si32 t = 0, si32 b = 0)
: l{ l }, r{ r }, t{ t }, b{ b }
{ }
constexpr side(side const&) = default;
constexpr side(twod p)
: l{ p.x }, r{ p.x }, t{ p.y }, b{ p.y }
{ }
constexpr side(rect a)
: l{ a.coor.x }, r{ a.coor.x + a.size.x },
t{ a.coor.y }, b{ a.coor.y + a.size.y }
{ }
side(fifo& queue)
{
l = queue(0);
r = queue(0);
t = queue(0);
b = queue(0);
}
constexpr side& operator = (side const&) = default;
bool operator == (side const&) const = default;
// side: Unite the two rectangles.
void operator |= (side s)
{
l = std::min(l, s.l);
t = std::min(t, s.t);
r = std::max(r, s.r);
b = std::max(b, s.b);
}
// side: Unite the two rectangles (normalized).
void operator |= (rect a)
{
l = std::min(l, a.coor.x);
t = std::min(t, a.coor.y);
r = std::max(r, a.coor.x + (a.size.x > 0 ? a.size.x - 1 : 0));
b = std::max(b, a.coor.y + (a.size.y > 0 ? a.size.y - 1 : 0));
}
// side: Unite the two rectangles (0-based, normalized).
void operator |= (twod p)
{
l = std::min(l, p.x);
t = std::min(t, p.y);
r = std::max(r, p.x);
b = std::max(b, p.y);
}
// side: Shift rectangle by the twod.
void operator += (twod p)
{
l += p.x;
r += p.x;
t += p.y;
b += p.y;
}
// side: Shift rectangle by the twod.
void operator -= (twod p)
{
l -= p.x;
r -= p.x;
t -= p.y;
b -= p.y;
}
void set(si32 new_l, si32 new_r = 0, si32 new_t = 0, si32 new_b = 0)
{
l = new_l;
r = new_r;
t = new_t;
b = new_b;
}
// side: Set left and right pads.
void set(std::pair<si32, si32> left_right)
{
set(left_right.first, left_right.second);
}
auto height() const { return b - t; }
auto width() const { return r - l; }
auto area() const { return rect{{ l, t }, { r - l, b - t }}; }
auto str() const
{
return "{ l:" + std::to_string(l) + " r: " + std::to_string(r) +
" t:" + std::to_string(t) + " b: " + std::to_string(b) + " }";
}
friend auto& operator << (std::ostream& s, side p)
{
return s << p.str();
}
// side: Change endianness to LE.
friend auto letoh(side s)
{
return side{ netxs::letoh(s.l),
netxs::letoh(s.r),
netxs::letoh(s.t),
netxs::letoh(s.b) };
}
};
// geometry: Padding, space around object.
struct dent
{
si32 l, r, t, b;
constexpr dent(si32 l = 0, si32 r = 0, si32 t = 0, si32 b = 0)
: l{ l }, r{ r }, t{ t }, b{ b }
{ }
constexpr dent(dent const&) = default;
constexpr dent& operator = (dent const&) = default;
constexpr bool operator == (dent const&) const = default;
explicit operator bool () const { return l != 0
|| r != 0
|| t != 0
|| b != 0; }
constexpr auto& operator -= (dent pad)
{
l -= pad.l;
r -= pad.r;
t -= pad.t;
b -= pad.b;
return *this;
}
constexpr auto& operator += (dent pad)
{
l += pad.l;
r += pad.r;
t += pad.t;
b += pad.b;
return *this;
}
// dent: Return inner area rectangle.
constexpr auto area(si32 size_x, si32 size_y) const
{
//todo RTL
return rect{{ l, t }, { std::max(0, size_x - (r + l)), std::max(0, size_y - (b + t)) }};
}
// dent: Return inner area rectangle.
constexpr auto area(twod size) const
{
return area(size.x, size.y);
}
// dent: Return inner area rectangle.
constexpr auto area(rect content) const
{
auto field = area(content.size.x, content.size.y);
field.coor += content.coor;
return field;
}
// dent: Return the coor of the area rectangle.
constexpr auto corner() const
{
return twod{ l, t };
}
// dent: Return the coor of the area rectangle.
constexpr auto coor(twod c) const
{
return twod{ c.x - l, c.y - t };
}
// dent: Return inner width.
constexpr auto width(si32 size_x) const
{
return std::max(0, size_x - (r + l));
}
// dent: Return inner height.
constexpr auto height(si32 size_y) const
{
return std::max(0, size_y - (b + t));
}
// dent: Return size of the inner rectangle.
constexpr auto size(twod size) const
{
return twod{ width(size.x), height(size.y) };
}
// dent: Return the horizontal coordinate using percentages.
constexpr auto h_ratio(si32 px, si32 size_x) const
{
return divround(px * (std::max(1, size_x - (r + l)) - 1), 100);
}
// dent: Return the vertical coordinate using percentages.
constexpr auto v_ratio(si32 py, si32 size_y) const
{
return divround(py * (std::max(1, size_y - (b + t)) - 1), 100);
}
void set(fifo& q)
{
l = q(0);
r = q(0);
t = q(0);
b = q(0);
}
// dent: Unary minus operator.
constexpr auto operator - () const
{
return dent{ -l, -r, -t, -b };
}
// dent: Scale padding.
constexpr auto operator * (si32 factor) const
{
return dent{ l * factor, r * factor, t * factor, b * factor };
}
// dent: Return size with padding.
friend auto operator + (twod size, dent pad)
{
return twod{ std::max(0, size.x + (pad.l + pad.r)),
std::max(0, size.y + (pad.t + pad.b)) };
}
// dent: Return size without padding.
friend auto operator - (twod size, dent pad)
{
return twod{ std::max(0, size.x - (pad.l + pad.r)),
std::max(0, size.y - (pad.t + pad.b)) };
}
// dent: Return area with padding.
friend auto operator + (rect area, dent pad)
{
if (area.size.x < 0) { area.coor.x += pad.l; area.size.x -= pad.l + pad.r; }
else { area.coor.x -= pad.l; area.size.x += pad.l + pad.r; }
if (area.size.y < 0) { area.coor.y += pad.t; area.size.y -= pad.t + pad.b; }
else { area.coor.y -= pad.t; area.size.y += pad.t + pad.b; }
return area;
}
// dent: Return area without padding.
friend auto operator - (rect area, dent pad)
{
if (area.size.x < 0) { area.coor.x -= pad.l; area.size.x += pad.l + pad.r; }
else { area.coor.x += pad.l; area.size.x -= pad.l + pad.r; }
if (area.size.y < 0) { area.coor.y -= pad.t; area.size.y += pad.t + pad.b; }
else { area.coor.y += pad.t; area.size.y -= pad.t + pad.b; }
return area;
}
// dent: Return area with padding.
friend auto operator += (rect& area, dent pad)
{
return area = area + pad;
}
// dent: Return area without padding.
friend auto operator -= (rect& area, dent pad)
{
return area = area - pad;
}
// dent: Return size with padding.
friend auto operator += (twod& size, dent pad)
{
return size = size + pad;
}
// dent: Return size without padding.
friend auto operator -= (twod& size, dent pad)
{
return size = size - pad;
}
// dent: Return summ of two paddings.
friend auto operator + (dent pad1, dent pad2)
{
pad1.l += pad2.l;
pad1.r += pad2.r;
pad1.t += pad2.t;
pad1.b += pad2.b;
return pad1;
}
// dent: Return diff of two paddings.
friend auto operator - (dent pad1, dent pad2)
{
pad1.l -= pad2.l;
pad1.r -= pad2.r;
pad1.t -= pad2.t;
pad1.b -= pad2.b;
return pad1;
}
// dent: Change endianness to LE.
friend auto letoh(dent d)
{
return dent{ netxs::letoh(d.l),
netxs::letoh(d.r),
netxs::letoh(d.t),
netxs::letoh(d.b) };
}
auto str() const
{
return '{' + std::to_string(l) + ','
+ std::to_string(r) + ','
+ std::to_string(t) + ','
+ std::to_string(b) + '}';
}
friend auto& operator << (std::ostream& s, dent d)
{
return s << d.str();
}
friend auto min(dent d1, dent d2) { return dent{ std::min(d1.l, d2.l), std::min(d1.r, d2.r), std::min(d1.t, d2.t), std::min(d1.b, d2.b) }; }
friend auto max(dent d1, dent d2) { return dent{ std::max(d1.l, d2.l), std::max(d1.r, d2.r), std::max(d1.t, d2.t), std::max(d1.b, d2.b) }; }
};
// dent: Return difference between area.
auto operator - (rect r1, rect r2)
{
auto top = r2.coor - r1.coor;
auto end = r1.size - r2.size - top;
return dent{ top.x, end.x,
top.y, end.y };
}
// geometry: Scroll info.
struct rack
{
twod region; // rack: Available scroll area.
rect window; // rack: Scrolling viewport.
dent beyond; // rack: Scroll margins outside of the scroll region.
twod vector; // rack: Scroll direction.
auto str() const
{
return "{ reg:" + region.str() + " win:" + window.str() +
" ovr:" + beyond.str() + " }";
}
friend auto& operator << (std::ostream& s, rack const& p)
{
return s << p.str();
}
};
// geometry: Extract 1D length.
template<class T>
static inline si32 getlen(T p)
{
if constexpr (std::is_same_v<T, twod>) return p.x;
else return static_cast<si32>(p);
}
// geometry: Extract 2D size.
template<class T>
static inline rect getvol(T p)
{
if constexpr (std::is_same_v<T, twod>) return { dot_00, p };
else return { dot_00, { static_cast<si32>(p), 1 } };
}
}