You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We try to use Intel-mllib to run K-means on AWS EMR and get error message like:
Job aborted due to stage failure: Task 4970 in stage 12.0 failed 4 times, most recent failure: Lost task 4970.3 in stage 12.0 (TID 30597) (ip-172-31-17-241.us-east-2.compute.internal executor 19): java.lang.UnsatisfiedLinkError: com.intel.daal.data_management.data.HomogenNumericTableByteBufferImpl.dInit(JI)J
at com.intel.daal.data_management.data.HomogenNumericTableByteBufferImpl.dInit(Native Method)
at com.intel.daal.data_management.data.HomogenNumericTableByteBufferImpl.initHomogenNumericTable(Unknown Source)
at com.intel.daal.data_management.data.HomogenNumericTableByteBufferImpl.<init>(Unknown Source)
at com.intel.daal.data_management.data.HomogenNumericTable.<init>(Unknown Source)
at com.intel.daal.data_management.data.Matrix.<init>(Unknown Source)
at org.apache.spark.ml.util.OneDAL$.vectorsToDenseNumericTable(OneDAL.scala:373)
at org.apache.spark.ml.util.OneDAL$.$anonfun$rddVectorToMergedTables$3(OneDAL.scala:445)
at org.apache.spark.ml.util.OneDAL$.$anonfun$rddVectorToMergedTables$3$adapted(OneDAL.scala:437)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
at org.apache.spark.storage.memory.MemoryStore.putIterator(MemoryStore.scala:222)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:299)
at org.apache.spark.storage.BlockManager.$anonfun$doPutIterator$1(BlockManager.scala:1423)
at org.apache.spark.storage.BlockManager.org$apache$spark$storage$BlockManager$$doPut(BlockManager.scala:1350)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1414)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:1237)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:384)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:335)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
The cluster contains 1 master and 3 workers. Each worker contains 96 vcores and 384GB memory. The configuration of K-means is showed below:
We try to use Intel-mllib to run K-means on AWS EMR and get error message like:
The cluster contains 1 master and 3 workers. Each worker contains 96 vcores and 384GB memory. The configuration of K-means is showed below:
The configuration of spark is showed below:
The text was updated successfully, but these errors were encountered: