-
Notifications
You must be signed in to change notification settings - Fork 35
/
convert_pass.py
executable file
·105 lines (82 loc) · 3.47 KB
/
convert_pass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env python
#
# Copyright 2014+ Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert MSMARCO passages
"""
import json
import argparse
import multiprocessing
from flexneuart.io import FileWrapper, multi_file_linegen
from flexneuart.io.stopwords import read_stop_words, STOPWORD_FILE
from flexneuart.text_proc.parse import SpacyTextParser, add_retokenized_field, pretokenize_url
from flexneuart.data_convert import add_bert_tok_args, create_bert_tokenizer_if_needed
from flexneuart.config import TEXT_BERT_TOKENIZED_NAME, MAX_DOC_SIZE, \
TEXT_FIELD_NAME, DOCID_FIELD, \
TEXT_RAW_FIELD_NAME, TEXT_UNLEMM_FIELD_NAME, \
IMAP_PROC_CHUNK_QTY, REPORT_QTY, SPACY_MODEL
parser = argparse.ArgumentParser(description='Convert MSMARCO-adhoc documents.')
parser.add_argument('--input', metavar='input file', help='input file',
type=str, required=True)
parser.add_argument('--output', metavar='output file', help='output file',
type=str, required=True)
parser.add_argument('--max_doc_size', metavar='max doc size bytes',
help='the threshold for the document size, if a document is larger it is truncated',
type=int, default=MAX_DOC_SIZE)
# Default is: Number of cores minus one for the spaning process
parser.add_argument('--proc_qty', metavar='# of processes', help='# of NLP processes to span',
type=int, default=multiprocessing.cpu_count() - 1)
add_bert_tok_args(parser)
args = parser.parse_args()
print(args)
arg_vars = vars(args)
inp_file = FileWrapper(args.input)
out_file = FileWrapper(args.output, 'w')
max_doc_size = args.max_doc_size
bert_tokenizer = create_bert_tokenizer_if_needed(args)
stop_words = read_stop_words(STOPWORD_FILE, lower_case=True)
print(stop_words)
nlp = SpacyTextParser(SPACY_MODEL, stop_words, keep_only_alpha_num=True, lower_case=True)
class PassParseWorker:
def __call__(self, line):
if not line:
return None
line = line[:max_doc_size] # cut documents that are too long!
fields = line.split('\t')
if len(fields) != 2:
return None
pid, body = fields
text, text_unlemm = nlp.proc_text(body)
doc = {DOCID_FIELD: pid,
TEXT_FIELD_NAME: text,
TEXT_UNLEMM_FIELD_NAME: text_unlemm,
TEXT_RAW_FIELD_NAME: body}
add_retokenized_field(doc, TEXT_RAW_FIELD_NAME, TEXT_BERT_TOKENIZED_NAME, bert_tokenizer)
return json.dumps(doc) + '\n'
proc_qty = args.proc_qty
print(f'Spanning {proc_qty} processes')
pool = multiprocessing.Pool(processes=proc_qty)
ln = 0
for doc_str in pool.imap(PassParseWorker(), inp_file, IMAP_PROC_CHUNK_QTY):
ln = ln + 1
if doc_str is not None:
out_file.write(doc_str)
else:
print('Ignoring misformatted line %d' % ln)
if ln % REPORT_QTY == 0:
print('Processed %d passages' % ln)
print('Processed %d passages' % ln)
inp_file.close()
out_file.close()