Skip to content

Commit 4075b90

Browse files
committed
docs(mkdocs): 更新版本号0.1.0->0.2.0; 更新训练日志
1 parent 28b2c09 commit 4075b90

File tree

3 files changed

+69
-74
lines changed

3 files changed

+69
-74
lines changed

docs/index.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# YOLO_v1
22

3-
实现`YOLO_v1`算法
3+
实现`YOLO_v1`目标检测算法
44

55
## 实现流程
66

@@ -10,7 +10,7 @@
1010
4. 训练模型
1111
5. 计算`mAP`
1212

13-
`50`轮训练完成后能够实现`99.01%``mAP`
13+
`50`轮训练完成后能够实现`97.31%``mAP`
1414

1515
## 相关链接
1616

docs/log.md

+66-71
Original file line numberDiff line numberDiff line change
@@ -8,259 +8,254 @@
88
* 优化器:`SGD`,学习率`1e-3`,动量大小`0.9`
99
* 衰减器:每隔`4`轮衰减`4%`,学习因子`0.96`
1010

11+
## 检测结果
12+
13+
```
14+
compute mAP
15+
{'cucumber': 63, 'mushroom': 61, 'eggplant': 62}
16+
98.16% = cucumber AP
17+
93.77% = eggplant AP
18+
100.00% = mushroom AP
19+
mAP = 97.31%
20+
```
21+
1122
## 训练日志
1223

1324
```
1425
$ python train.py
26+
24
1527
Epoch 0/49
1628
----------
17-
train Loss: 4.3550
29+
train Loss: 4.6631
1830
save model
1931
2032
Epoch 1/49
2133
----------
22-
train Loss: 3.4803
34+
train Loss: 3.9457
2335
save model
2436
2537
Epoch 2/49
2638
----------
27-
train Loss: 3.3921
39+
train Loss: 3.5757
2840
save model
2941
3042
Epoch 3/49
3143
----------
32-
train Loss: 3.0650
44+
train Loss: 3.4125
3345
save model
3446
3547
Epoch 4/49
3648
----------
37-
train Loss: 2.9081
49+
train Loss: 3.1608
3850
save model
3951
4052
Epoch 5/49
4153
----------
42-
train Loss: 2.5893
43-
save model
54+
train Loss: 3.2524
4455
4556
Epoch 6/49
4657
----------
47-
train Loss: 2.5640
58+
train Loss: 2.8278
4859
save model
4960
5061
Epoch 7/49
5162
----------
52-
train Loss: 2.4905
63+
train Loss: 2.7577
5364
save model
5465
5566
Epoch 8/49
5667
----------
57-
train Loss: 2.1913
68+
train Loss: 2.6739
5869
save model
5970
6071
Epoch 9/49
6172
----------
62-
train Loss: 2.1152
73+
train Loss: 2.4874
6374
save model
6475
6576
Epoch 10/49
6677
----------
67-
train Loss: 1.9428
68-
save model
78+
train Loss: 2.5400
6979
7080
Epoch 11/49
7181
----------
72-
train Loss: 1.7271
73-
save model
82+
train Loss: 2.7458
7483
7584
Epoch 12/49
7685
----------
77-
train Loss: 1.4372
78-
save model
86+
train Loss: 2.5519
7987
8088
Epoch 13/49
8189
----------
82-
train Loss: 1.8185
90+
train Loss: 2.5486
8391
8492
Epoch 14/49
8593
----------
86-
train Loss: 1.5460
94+
train Loss: 2.4983
8795
8896
Epoch 15/49
8997
----------
90-
train Loss: 1.1692
98+
train Loss: 2.4122
9199
save model
92100
93101
Epoch 16/49
94102
----------
95-
train Loss: 1.0540
103+
train Loss: 2.3499
96104
save model
97105
98106
Epoch 17/49
99107
----------
100-
train Loss: 0.9028
108+
train Loss: 2.3360
101109
save model
102110
103111
Epoch 18/49
104112
----------
105-
train Loss: 0.7702
113+
train Loss: 2.1346
106114
save model
107115
108116
Epoch 19/49
109117
----------
110-
train Loss: 0.7176
118+
train Loss: 1.6496
111119
save model
112120
113121
Epoch 20/49
114122
----------
115-
train Loss: 0.7485
123+
train Loss: 1.4959
124+
save model
116125
117126
Epoch 21/49
118127
----------
119-
train Loss: 0.6307
128+
train Loss: 1.2388
120129
save model
121130
122131
Epoch 22/49
123132
----------
124-
train Loss: 0.5581
133+
train Loss: 0.9731
125134
save model
126135
127136
Epoch 23/49
128137
----------
129-
train Loss: 0.5320
138+
train Loss: 0.8746
130139
save model
131140
132141
Epoch 24/49
133142
----------
134-
train Loss: 0.5893
143+
train Loss: 0.8926
135144
136145
Epoch 25/49
137146
----------
138-
train Loss: 0.5185
147+
train Loss: 0.7697
139148
save model
140149
141150
Epoch 26/49
142151
----------
143-
train Loss: 0.6156
152+
train Loss: 0.7731
144153
145154
Epoch 27/49
146155
----------
147-
train Loss: 0.5096
156+
train Loss: 0.6818
148157
save model
149158
150159
Epoch 28/49
151160
----------
152-
train Loss: 0.5403
161+
train Loss: 0.6873
153162
154163
Epoch 29/49
155164
----------
156-
train Loss: 0.4653
165+
train Loss: 0.6238
157166
save model
158167
159168
Epoch 30/49
160169
----------
161-
train Loss: 0.3850
170+
train Loss: 0.5284
162171
save model
163172
164173
Epoch 31/49
165174
----------
166-
train Loss: 0.3609
175+
train Loss: 0.4824
167176
save model
168177
169178
Epoch 32/49
170179
----------
171-
train Loss: 0.4063
180+
train Loss: 0.4355
181+
save model
172182
173183
Epoch 33/49
174184
----------
175-
train Loss: 0.3349
185+
train Loss: 0.4300
176186
save model
177187
178188
Epoch 34/49
179189
----------
180-
train Loss: 0.2629
190+
train Loss: 0.4019
181191
save model
182192
183193
Epoch 35/49
184194
----------
185-
train Loss: 0.3319
195+
train Loss: 0.3622
196+
save model
186197
187198
Epoch 36/49
188199
----------
189-
train Loss: 0.2790
200+
train Loss: 0.4424
190201
191202
Epoch 37/49
192203
----------
193-
train Loss: 0.2487
204+
train Loss: 0.3394
194205
save model
195206
196207
Epoch 38/49
197208
----------
198-
train Loss: 0.2325
209+
train Loss: 0.3256
199210
save model
200211
201212
Epoch 39/49
202213
----------
203-
train Loss: 0.2146
214+
train Loss: 0.2458
204215
save model
205216
206217
Epoch 40/49
207218
----------
208-
train Loss: 0.2087
209-
save model
219+
train Loss: 0.2592
210220
211221
Epoch 41/49
212222
----------
213-
train Loss: 0.1626
214-
save model
223+
train Loss: 0.2518
215224
216225
Epoch 42/49
217226
----------
218-
train Loss: 0.1446
227+
train Loss: 0.2172
219228
save model
220229
221230
Epoch 43/49
222231
----------
223-
train Loss: 0.1372
224-
save model
232+
train Loss: 0.2442
225233
226234
Epoch 44/49
227235
----------
228-
train Loss: 0.1260
236+
train Loss: 0.1925
229237
save model
230238
231239
Epoch 45/49
232240
----------
233-
train Loss: 0.1231
241+
train Loss: 0.1607
234242
save model
235243
236244
Epoch 46/49
237245
----------
238-
train Loss: 0.1232
246+
train Loss: 0.1828
239247
240248
Epoch 47/49
241249
----------
242-
train Loss: 0.1475
250+
train Loss: 0.1770
243251
244252
Epoch 48/49
245253
----------
246-
train Loss: 0.1226
247-
save model
254+
train Loss: 0.1690
248255
249256
Epoch 49/49
250257
----------
251-
train Loss: 0.1000
252-
save model
258+
train Loss: 0.1730
253259
254-
Training complete in 6m 28s
255-
```
256-
257-
## 检测结果
258-
259-
```
260-
compute mAP
261-
{'cucumber': 63, 'mushroom': 61, 'eggplant': 62}
262-
99.43% = cucumber AP
263-
98.39% = eggplant AP
264-
99.22% = mushroom AP
265-
mAP = 99.01%
260+
Training complete in 21m 39s
266261
```

mkdocs.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ site_dir: 'site'
1313
# 额外信息
1414
extra:
1515
# 版本号
16-
version: 0.1.0
16+
version: 0.2.0
1717
# 主题
1818
theme:
1919
# name: 'readthedocs'

0 commit comments

Comments
 (0)