File tree 3 files changed +69
-74
lines changed
3 files changed +69
-74
lines changed Original file line number Diff line number Diff line change 1
1
# YOLO_v1
2
2
3
- 实现` YOLO_v1 ` 算法
3
+ 实现` YOLO_v1 ` 目标检测算法
4
4
5
5
## 实现流程
6
6
10
10
4 . 训练模型
11
11
5 . 计算` mAP `
12
12
13
- ` 50 ` 轮训练完成后能够实现` 99.01 %` 的` mAP `
13
+ ` 50 ` 轮训练完成后能够实现` 97.31 %` 的` mAP `
14
14
15
15
## 相关链接
16
16
Original file line number Diff line number Diff line change 8
8
* 优化器:` SGD ` ,学习率` 1e-3 ` ,动量大小` 0.9 `
9
9
* 衰减器:每隔` 4 ` 轮衰减` 4% ` ,学习因子` 0.96 `
10
10
11
+ ## 检测结果
12
+
13
+ ```
14
+ compute mAP
15
+ {'cucumber': 63, 'mushroom': 61, 'eggplant': 62}
16
+ 98.16% = cucumber AP
17
+ 93.77% = eggplant AP
18
+ 100.00% = mushroom AP
19
+ mAP = 97.31%
20
+ ```
21
+
11
22
## 训练日志
12
23
13
24
```
14
25
$ python train.py
26
+ 24
15
27
Epoch 0/49
16
28
----------
17
- train Loss: 4.3550
29
+ train Loss: 4.6631
18
30
save model
19
31
20
32
Epoch 1/49
21
33
----------
22
- train Loss: 3.4803
34
+ train Loss: 3.9457
23
35
save model
24
36
25
37
Epoch 2/49
26
38
----------
27
- train Loss: 3.3921
39
+ train Loss: 3.5757
28
40
save model
29
41
30
42
Epoch 3/49
31
43
----------
32
- train Loss: 3.0650
44
+ train Loss: 3.4125
33
45
save model
34
46
35
47
Epoch 4/49
36
48
----------
37
- train Loss: 2.9081
49
+ train Loss: 3.1608
38
50
save model
39
51
40
52
Epoch 5/49
41
53
----------
42
- train Loss: 2.5893
43
- save model
54
+ train Loss: 3.2524
44
55
45
56
Epoch 6/49
46
57
----------
47
- train Loss: 2.5640
58
+ train Loss: 2.8278
48
59
save model
49
60
50
61
Epoch 7/49
51
62
----------
52
- train Loss: 2.4905
63
+ train Loss: 2.7577
53
64
save model
54
65
55
66
Epoch 8/49
56
67
----------
57
- train Loss: 2.1913
68
+ train Loss: 2.6739
58
69
save model
59
70
60
71
Epoch 9/49
61
72
----------
62
- train Loss: 2.1152
73
+ train Loss: 2.4874
63
74
save model
64
75
65
76
Epoch 10/49
66
77
----------
67
- train Loss: 1.9428
68
- save model
78
+ train Loss: 2.5400
69
79
70
80
Epoch 11/49
71
81
----------
72
- train Loss: 1.7271
73
- save model
82
+ train Loss: 2.7458
74
83
75
84
Epoch 12/49
76
85
----------
77
- train Loss: 1.4372
78
- save model
86
+ train Loss: 2.5519
79
87
80
88
Epoch 13/49
81
89
----------
82
- train Loss: 1.8185
90
+ train Loss: 2.5486
83
91
84
92
Epoch 14/49
85
93
----------
86
- train Loss: 1.5460
94
+ train Loss: 2.4983
87
95
88
96
Epoch 15/49
89
97
----------
90
- train Loss: 1.1692
98
+ train Loss: 2.4122
91
99
save model
92
100
93
101
Epoch 16/49
94
102
----------
95
- train Loss: 1.0540
103
+ train Loss: 2.3499
96
104
save model
97
105
98
106
Epoch 17/49
99
107
----------
100
- train Loss: 0.9028
108
+ train Loss: 2.3360
101
109
save model
102
110
103
111
Epoch 18/49
104
112
----------
105
- train Loss: 0.7702
113
+ train Loss: 2.1346
106
114
save model
107
115
108
116
Epoch 19/49
109
117
----------
110
- train Loss: 0.7176
118
+ train Loss: 1.6496
111
119
save model
112
120
113
121
Epoch 20/49
114
122
----------
115
- train Loss: 0.7485
123
+ train Loss: 1.4959
124
+ save model
116
125
117
126
Epoch 21/49
118
127
----------
119
- train Loss: 0.6307
128
+ train Loss: 1.2388
120
129
save model
121
130
122
131
Epoch 22/49
123
132
----------
124
- train Loss: 0.5581
133
+ train Loss: 0.9731
125
134
save model
126
135
127
136
Epoch 23/49
128
137
----------
129
- train Loss: 0.5320
138
+ train Loss: 0.8746
130
139
save model
131
140
132
141
Epoch 24/49
133
142
----------
134
- train Loss: 0.5893
143
+ train Loss: 0.8926
135
144
136
145
Epoch 25/49
137
146
----------
138
- train Loss: 0.5185
147
+ train Loss: 0.7697
139
148
save model
140
149
141
150
Epoch 26/49
142
151
----------
143
- train Loss: 0.6156
152
+ train Loss: 0.7731
144
153
145
154
Epoch 27/49
146
155
----------
147
- train Loss: 0.5096
156
+ train Loss: 0.6818
148
157
save model
149
158
150
159
Epoch 28/49
151
160
----------
152
- train Loss: 0.5403
161
+ train Loss: 0.6873
153
162
154
163
Epoch 29/49
155
164
----------
156
- train Loss: 0.4653
165
+ train Loss: 0.6238
157
166
save model
158
167
159
168
Epoch 30/49
160
169
----------
161
- train Loss: 0.3850
170
+ train Loss: 0.5284
162
171
save model
163
172
164
173
Epoch 31/49
165
174
----------
166
- train Loss: 0.3609
175
+ train Loss: 0.4824
167
176
save model
168
177
169
178
Epoch 32/49
170
179
----------
171
- train Loss: 0.4063
180
+ train Loss: 0.4355
181
+ save model
172
182
173
183
Epoch 33/49
174
184
----------
175
- train Loss: 0.3349
185
+ train Loss: 0.4300
176
186
save model
177
187
178
188
Epoch 34/49
179
189
----------
180
- train Loss: 0.2629
190
+ train Loss: 0.4019
181
191
save model
182
192
183
193
Epoch 35/49
184
194
----------
185
- train Loss: 0.3319
195
+ train Loss: 0.3622
196
+ save model
186
197
187
198
Epoch 36/49
188
199
----------
189
- train Loss: 0.2790
200
+ train Loss: 0.4424
190
201
191
202
Epoch 37/49
192
203
----------
193
- train Loss: 0.2487
204
+ train Loss: 0.3394
194
205
save model
195
206
196
207
Epoch 38/49
197
208
----------
198
- train Loss: 0.2325
209
+ train Loss: 0.3256
199
210
save model
200
211
201
212
Epoch 39/49
202
213
----------
203
- train Loss: 0.2146
214
+ train Loss: 0.2458
204
215
save model
205
216
206
217
Epoch 40/49
207
218
----------
208
- train Loss: 0.2087
209
- save model
219
+ train Loss: 0.2592
210
220
211
221
Epoch 41/49
212
222
----------
213
- train Loss: 0.1626
214
- save model
223
+ train Loss: 0.2518
215
224
216
225
Epoch 42/49
217
226
----------
218
- train Loss: 0.1446
227
+ train Loss: 0.2172
219
228
save model
220
229
221
230
Epoch 43/49
222
231
----------
223
- train Loss: 0.1372
224
- save model
232
+ train Loss: 0.2442
225
233
226
234
Epoch 44/49
227
235
----------
228
- train Loss: 0.1260
236
+ train Loss: 0.1925
229
237
save model
230
238
231
239
Epoch 45/49
232
240
----------
233
- train Loss: 0.1231
241
+ train Loss: 0.1607
234
242
save model
235
243
236
244
Epoch 46/49
237
245
----------
238
- train Loss: 0.1232
246
+ train Loss: 0.1828
239
247
240
248
Epoch 47/49
241
249
----------
242
- train Loss: 0.1475
250
+ train Loss: 0.1770
243
251
244
252
Epoch 48/49
245
253
----------
246
- train Loss: 0.1226
247
- save model
254
+ train Loss: 0.1690
248
255
249
256
Epoch 49/49
250
257
----------
251
- train Loss: 0.1000
252
- save model
258
+ train Loss: 0.1730
253
259
254
- Training complete in 6m 28s
255
- ```
256
-
257
- ## 检测结果
258
-
259
- ```
260
- compute mAP
261
- {'cucumber': 63, 'mushroom': 61, 'eggplant': 62}
262
- 99.43% = cucumber AP
263
- 98.39% = eggplant AP
264
- 99.22% = mushroom AP
265
- mAP = 99.01%
260
+ Training complete in 21m 39s
266
261
```
Original file line number Diff line number Diff line change @@ -13,7 +13,7 @@ site_dir: 'site'
13
13
# 额外信息
14
14
extra :
15
15
# 版本号
16
- version : 0.1 .0
16
+ version : 0.2 .0
17
17
# 主题
18
18
theme :
19
19
# name: 'readthedocs'
You can’t perform that action at this time.
0 commit comments