-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrick.py
130 lines (106 loc) · 4.7 KB
/
trick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import pandas as pd
import imageio
import os
from multiprocessing import Pool
from itertools import cycle
import warnings
import time
from tqdm import tqdm
from skimage import img_as_ubyte
from skimage.transform import resize
import yt_dlp
from argparse import ArgumentParser
from util import save
warnings.filterwarnings("ignore")
def progress_hook(d):
if d['status'] == 'downloading':
print(f"Downloading {d['filename']}: {d['_percent_str']} at {d['_speed_str']} ETA {d['_eta_str']}")
elif d['status'] == 'finished':
print(f"Finished downloading {d['filename']}")
elif d['status'] == 'error':
print(f"Error downloading {d['filename']}")
def download(video_id, args):
video_url = f"https://www.youtube.com/watch?v={video_id}"
video_path = os.path.join(args.video_folder, f"{video_id}.mp4")
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4',
'outtmpl': video_path,
'noplaylist': True,
'writesubtitles': True,
'writeautomaticsub': True,
'subtitleslangs': ['en'],
'progress_hooks': [progress_hook],
'postprocessors': [{
'key': 'FFmpegVideoConvertor',
'preferedformat': 'mp4',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([video_url])
return video_path
def run(data):
video_id, args = data
video_path = os.path.join(args.video_folder, video_id.split('#')[0] + '.mp4')
if not os.path.exists(video_path):
download(video_id.split('#')[0], args)
if not os.path.exists(video_path):
print(f'Cannot load video {video_id.split("#")[0]}, broken link')
return
reader = imageio.get_reader(video_path)
fps = reader.get_meta_data()['fps']
df = pd.read_csv(args.metadata)
df = df[df['video_id'] == video_id]
all_chunks_dict = [{'start': df['start'].iloc[j], 'end': df['end'].iloc[j],
'bbox': list(map(int, df['bbox'].iloc[j].split('-'))), 'frames': []}
for j in range(df.shape[0])]
ref_fps = df['fps'].iloc[0]
ref_height = df['height'].iloc[0]
ref_width = df['width'].iloc[0]
partition = df['partition'].iloc[0]
try:
for i, frame in enumerate(reader):
for entry in all_chunks_dict:
if (i * ref_fps >= entry['start'] * fps) and (i * ref_fps < entry['end'] * fps):
left, top, right, bot = entry['bbox']
left = int(left / (ref_width / frame.shape[1]))
top = int(top / (ref_height / frame.shape[0]))
right = int(right / (ref_width / frame.shape[1]))
bot = int(bot / (ref_height / frame.shape[0]))
crop = frame[top:bot, left:right]
if args.image_shape is not None:
crop = img_as_ubyte(resize(crop, args.image_shape, anti_aliasing=True))
entry['frames'].append(crop)
except imageio.core.format.CannotReadFrameError:
pass
for entry in all_chunks_dict:
if 'person_id' in df:
first_part = df['person_id'].iloc[0] + "#"
else:
first_part = ""
first_part = first_part + '#'.join(video_id.split('#')[::-1])
path = first_part + '#' + str(entry['start']).zfill(6) + '#' + str(entry['end']).zfill(6) + '.mp4'
save(os.path.join(args.out_folder, partition, path), entry['frames'], args.format)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--video_folder", default='youtube-taichi', help='Path to youtube videos')
parser.add_argument("--metadata", default='taichi-metadata-new.csv', help='Path to metadata')
parser.add_argument("--out_folder", default='taichi-png', help='Path to output')
parser.add_argument("--format", default='.png', help='Storing format')
parser.add_argument("--workers", default=1, type=int, help='Number of workers')
parser.add_argument("--image_shape", default=(256, 256), type=lambda x: tuple(map(int, x.split(','))),
help="Image shape, None for no resize")
args = parser.parse_args()
if not os.path.exists(args.video_folder):
os.makedirs(args.video_folder)
if not os.path.exists(args.out_folder):
os.makedirs(args.out_folder)
for partition in ['test', 'train']:
if not os.path.exists(os.path.join(args.out_folder, partition)):
os.makedirs(os.path.join(args.out_folder, partition))
df = pd.read_csv(args.metadata)
video_ids = set(df['video_id'])
pool = Pool(processes=args.workers)
args_list = cycle([args])
for _ in tqdm(pool.imap_unordered(run, zip(video_ids, args_list))):
pass