Skip to content

Latest commit

 

History

History
38 lines (33 loc) · 1.39 KB

Generating_a_Fusion_Image_One’s_Identity_and_Another’s_Shape.md

File metadata and controls

38 lines (33 loc) · 1.39 KB

Generating a Fusion Image: One’s Identity and Another’s Shape

arXiv

Method

FGAN

  1. Goal: $x=(I_x,S_x), y=(I_y,S_y), G(x,y)=(I_x,S_y)$

identity: can be seen as a set-level characteristic shape: can be seen as an instance-level characteristic

  1. Loss

    1. Identity loss $$ \begin{array}l L_I(G,D)=\mathbb E_{x,\hat x\sim p_{data}(x)}[\log D(x,\hat x)]+ \mathbb E_{x\sim p_{data}(x),y\sim p_{data}(y)}[\log( 1-D(x,G(x,y)))] \ L_I(G,D)=\mathbb E_{x,\hat x\sim p_{data}(x)}[||1-D(x,\hat x)||_ 2]+ \mathbb E_{x\sim p_{data}(x),y\sim p_{data}(y)}[||D(x,G(x,y))||_ 2] \end{array} $$

    $x, y$是两个输入,$\hat x$是和$x$同identity的另一个图像。实际上用下面的loss

    1. Shape Loss loss $$ \begin{array}l L_{S_1}(G)=\mathbb E_{x\sim p_{data}(x),y\sim p_{data}(y)}[||y-G(x,y)||_ 1] \ L_{S_{2a}}=\mathbb E_{x\sim p_{data}(x),y\sim p_{data}}(||y-G(y,G(x,y))||_ 1) \ L_{S_{2b}}=\mathbb E_{x\sim p_{data}(x),y\sim p_{data}}(||G(x,y)-G(G(x,y),y)||_ 1) \end{array} $$

    $s_1: I_x=I_y$ $s_{2a}: (I_x,S_x)\to (I_x,S_y)\to (I_y,S_y)$ $s_{2b}: (I_x,S_x)\to (I_x,S_y)\to (I_x,S_y)$

  2. Min-Patch Training patch patch-GAN 的最后一层再加层Minimum pooling,找到最困难的区域

Learned

  1. condition GAN,这里有两个condition