[TOC]
-
Grounding objects in video by referring expressions
- 两个基本元素
- box proposal
$O={o_i}_{i=1}^M$ - textual query
$Q$
- box proposal
- grounding model 输出一组匹配得分$S={s_i}_{i=1}^M$
- 最高得分的proposal被选择为predicted region
- 为解决predicted region在时序上的不稳定性(主要是false negative),对得分$S$进行重排序
- 目的:减少false negative;忽略短时出现的目标
- 根据overlap $$ \hat s_i = s_i\times(\sum_{j=1,j\neq i}^Mr_{i,j}\times d_j\times s_j/t_{i,j})$$
$r_{i,j}$ 是第$i,j$个box的IoU$t_{i,j}=|f_i-f_j|$ 是temporal distance,$f$ 是frame$d_j$ 是原始的score
- 两个基本元素
-
Pixel-level video object segmentation (box refinement task)
-
产生二值图, concatenate RGB 通道和 optical flow magnitude。形成5通道的输入 (Fusing appearance and motion cues)
-
Training
- 在静态图上训练,采用密集分割标注的数据集
- bbox由分割gt产生,训练时随机抖动
- 综合光流信息 [63],减去中值做平均
subtracting the median motion for each frame and averaging the magnitude of the forward and backward flow.
- 放射变换:模拟相机或目标的运动
-
[63]. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2017) [66]. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915 (2016)
spatial pyramid pooling
用query找到bbox,再对bbox进行分割,其中对bbox proposal做了时序一致性处理,处理过程存在疑问。