Skip to content

Latest commit

 

History

History
73 lines (57 loc) · 2.35 KB

README.md

File metadata and controls

73 lines (57 loc) · 2.35 KB

Dataset structure

├── super_resolution
│   ├── DIV2K
│   │   ├── DIV2K_train_HR
│   │   ├── DIV2K_train_LR_bicubic
│   │   │   ├── X2
│   │   │   ├── X3
│   │   │   ├── X4
│   │   ├── DIV2K_valid_HR
│   │   ├── DIV2K_valid_LR_bicubic
│   │   │   ├── X2
│   │   │   ├── X3
│   │   │   └── X4
│   │   └──
│   ├── benchmark
│   │   ├── Set5
│   │   ├── Set14
│   │   ├── B100
│   │   ├── Urban100
│   │   └──
│   └──
├── denoise
│   ├── DIV2KGRAY
│   │   ├── Train_HR
│   │   └──
│   ├── BenchmarkDenoise
│   │   ├── DenoiseSet68
│   │   │   ├── bin
│   │   │   └──
│   │   └──
│   └──
└──

Test

  1. Prepare image super-resolution and denoising dataset.

    i. Download DIV2K training and validation images in the NTIRE-2017 challenge.

    ii. Download super-resolution (Set5, Set14, B100, and Urban100) benchmark and denoising benchmark (Set68) from GoogleDrive or Dropbox.

    iii. Prepare the folder structure like the one above.

  2. Download the compressed models form Google Drive or Dropbox.

  3. cd ./scripts/dhp/

  4. Test the compressed DnCNN, UNet, SRResNet, and EDSR models.

            bash test_dncnn.sh
            bash test_unet.sh
            bash test_srresnet.sh
            bash test_edsr.sh
  5. Be sure to change the --pretrain, --dir_data, --dir_save directories.

Train

  1. cd ./scripts/dhp/

  2. Run the code to compress DnCNN, UNet, SRResNet, and EDSR networks.

    	bash dhp_dncnn.sh
    	bash dhp_unet.sh
    	bash dhp_srresnet.sh
    	bash dhp_edsr.sh
  3. Be sure to change the --pretrain, --dir_data, --dir_save directories.