forked from JEstabrook/decoupleR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
69 lines (55 loc) · 3.28 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# decoupleR <img src="inst/figures/logo.svg" align="right" width="120" />
<!-- badges: start -->
[![Lifecycle: maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
[![BioC status](http://www.bioconductor.org/shields/build/release/bioc/decoupleR.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/decoupleR)
[![BioC dev status](http://www.bioconductor.org/shields/build/devel/bioc/decoupleR.svg)](https://bioconductor.org/checkResults/devel/bioc-LATEST/decoupleR)
[![R build status](https://github.com/saezlab/decoupleR/workflows/R-CMD-check-bioc/badge.svg)](https://github.com/saezlab/decoupleR/actions)
[![Codecov test coverage](https://codecov.io/gh/saezlab/decoupleR/branch/master/graph/badge.svg)](https://codecov.io/gh/saezlab/decoupleR?branch=master)
[![GitHub issues](https://img.shields.io/github/issues/saezlab/decoupleR)](https://github.com/saezlab/decoupleR/issues)
<!-- badges: end -->
## Overview
There are many methods that allow us to extract biological activities from omics data.
`decoupleR` is a Bioconductor package containing different statistical methods to
extract biological signatures from prior knowledge within a unified framework.
Additionally, it incorporates methods that take into account the sign and weight of
network interactions. `decoupleR` can be used with any omic, as long as its
features can be linked to a biological process based on prior knowledge.
For example, in transcriptomics gene sets regulated by a transcription
factor, or in phospho-proteomics phosphosites that are targeted by a kinase.
<p align="center" width="100%">
<img src="https://github.com/saezlab/decoupleR/blob/master/inst/figures/graphical_abstract.png?raw=1" align="center" width="45%">
</p>
For more information about how this package has been used with real data,
please check the following links:
- [decoupleR's vignette](https://saezlab.github.io/decoupleR/articles/decoupleR.html)
- [Python implementation](https://decoupler-py.readthedocs.io/en/latest/)
- [decoupleR's manuscript repository](https://github.com/saezlab/decoupleR_manuscript)
- [Creation of benchmarking pipelines](https://github.com/saezlab/decoupleRBench)
- [Example of Kinase and TF activity estimation](https://saezlab.github.io/kinase_tf_mini_tuto/)
# Installation
`decoupleR` is an R package distributed as part of the Bioconductor
project. To install the package, start R and enter:
```{r bioconductor_install, eval=FALSE}
install.packages("BiocManager")
BiocManager::install("decoupleR")
```
Alternatively, you can instead install the latest development version from [GitHub](https://github.com/) with:
```{r github_install, eval=FALSE}
BiocManager::install("saezlab/decoupleR")
```
## Citation
Badia-i-Mompel P., Vélez J., Braunger J., Geiss C., Dimitrov D., Müller-Dott S., Taus P., Dugourd A., Holland
C.H., Ramirez Flores R.O. and Saez-Rodriguez J. 2021. decoupleR: Ensemble of computational methods to infer
biological activities from omics data. bioRxiv. https://doi.org/10.1101/2021.11.04.467271