forked from tum-ens/urbs
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run1node.py
173 lines (146 loc) · 6.21 KB
/
run1node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import pyomo.environ
import shutil
import urbs
from datetime import datetime
from pyomo.opt.base import SolverFactory
# SCENARIOS
def scenario_generator(scenario_name, pv_cost, bat_cost, diesel_gen_cost,
fuel_cost):
def scenario(data):
# short-hands for individual DataFrames
com = data['commodity']
pro = data['process']
sto = data['storage']
# row indices for entries
diesel = ('StRupertMayer', 'Diesel', 'Stock')
pv_plant = ('StRupertMayer', 'Photovoltaics')
diesel_gen = ('StRupertMayer', 'Diesel generator')
battery = ('StRupertMayer', 'Battery', 'Electricity')
# change investment/fuel cost values according to arguments
pro.loc[pv_plant, 'inv-cost'] = pv_cost # EUR/kW
sto.loc[battery, 'inv-cost-c'] = bat_cost # EUR/kWh
pro.loc[diesel_gen, 'inv-cost'] = diesel_gen_cost # EUR/kW
com.loc[diesel, 'price'] = fuel_cost # EUR/kWh
# for the 3 investment costs, also change fix costs accordingly
pro.loc[pv_plant, 'fix-cost'] = 0.05 * pv_cost
sto.loc[battery, 'fix-cost-c'] = 0.05 * bat_cost
pro.loc[diesel_gen, 'fix-cost'] = 0.1 * diesel_gen_cost
return data
scenario.__name__ = scenario_name # used for result filenames
return scenario
def prepare_result_directory(result_name):
""" create a time stamped directory within the result folder """
# timestamp for result directory
now = datetime.now().strftime('%Y%m%dT%H%M')
# create result directory if not existent
result_dir = os.path.join('result', '{}-{}'.format(result_name, now))
if not os.path.exists(result_dir):
os.makedirs(result_dir)
return result_dir
def setup_solver(optim, logfile='solver.log'):
""" """
if optim.name == 'gurobi':
# reference with list of option names
# http://www.gurobi.com/documentation/5.6/reference-manual/parameters
optim.set_options("logfile={}".format(logfile))
# optim.set_options("timelimit=7200") # seconds
# optim.set_options("mipgap=5e-4") # default = 1e-4
elif optim.name == 'glpk':
# reference with list of options
# execute 'glpsol --help'
optim.set_options("log={}".format(logfile))
# optim.set_options("tmlim=7200") # seconds
# optim.set_options("mipgap=.0005")
else:
print("Warning from setup_solver: no options set for solver "
"'{}'!".format(optim.name))
return optim
def run_scenario(input_file, timesteps, scenario, result_dir, plot_periods={}):
""" run an urbs model for given input, time steps and scenario
Args:
input_file: filename to an Excel spreadsheet for urbs.read_excel
timesteps: a list of timesteps, e.g. range(0,8761)
scenario: a scenario function that modifies the input data dict
result_dir: directory name for result spreadsheet and plots
Returns:
the urbs model instance
"""
# scenario name, read and modify data for scenario
sce = scenario.__name__
data = urbs.read_excel(input_file)
data = scenario(data)
# create model
prob = urbs.create_model(data, timesteps)
# refresh time stamp string and create filename for logfile
now = prob.created
log_filename = os.path.join(result_dir, '{}.log').format(sce)
# solve model and read results
optim = SolverFactory('gurobi') # cplex, glpk, gurobi, ...
optim = setup_solver(optim, logfile=log_filename)
result = optim.solve(prob, tee=True)
# copy input file to result directory
shutil.copyfile(input_file, os.path.join(result_dir, input_file))
# write report to spreadsheet
urbs.report(
prob,
os.path.join(result_dir, '{}.xlsx').format(sce),
prob.com_demand, prob.sit)
urbs.result_figures(
prob,
os.path.join(result_dir, '{}'.format(sce)),
plot_title_prefix=sce.replace('_', ' ').title(),
periods=plot_periods, power_unit='kW', energy_unit='kWh',
figure_size=(24,4))
return prob
if __name__ == '__main__':
input_file = '1node.xlsx'
result_name = os.path.splitext(input_file)[0] # cut away file extension
result_dir = prepare_result_directory(result_name) # name + time stamp
# simulation timesteps
(offset, length) = (0, 8760) # time step selection
timesteps = range(offset, offset+length+1)
# plotting timesteps
periods = {
'01-jan': range( 1, 745),
'02-feb': range( 745, 1417),
'03-mar': range(1417, 2161),
'04-apr': range(2161, 2881),
'05-may': range(2881, 3625),
'06-jun': range(3625, 4345),
'07-jul': range(4345, 5089),
'08-aug': range(5089, 5833),
'09-sep': range(5833, 6553),
'10-oct': range(6553, 7297),
'11-nov': range(7297, 8017),
'12-dec': range(8017, 8761)
}
# add or change plot colors
my_colors = {
'Demand': (0, 0, 0),
'Diesel generator': (218, 215, 203),
'Electricity': (0, 51, 89),
'Photovoltaics': (0, 101, 189),
'Storage': (100, 160, 200)}
for country, color in my_colors.items():
urbs.COLORS[country] = color
# select scenarios to be run
scenarios = [
# name pv bat gen fuel
# High battery cost, PV high to low
scenario_generator('s01', 2000, 1000, 200, 0.09),
scenario_generator('s02', 1500, 1000, 200, 0.09),
scenario_generator('s03', 1000, 1000, 200, 0.09),
scenario_generator('s04', 500, 1000, 200, 0.09),
# Medium battery cost, PV medium to low
scenario_generator('s05', 1000, 500, 200, 0.09),
scenario_generator('s06', 500, 500, 200, 0.09),
# Low battery cost, PV medium to low
scenario_generator('s07', 1000, 200, 200, 0.09),
scenario_generator('s08', 500, 200, 200, 0.09),
# High fuel cost scenarios, PV and battery medium
scenario_generator('s09', 500, 500, 200, 0.18),
scenario_generator('s10', 500, 500, 200, 0.27)]
for scenario in scenarios:
prob = run_scenario(input_file, timesteps, scenario,
result_dir, plot_periods=periods)