forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib.rs
209 lines (183 loc) · 5.6 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// SPDX-License-Identifier: GPL-2.0
//! The `kernel` crate.
//!
//! This crate contains the kernel APIs that have been ported or wrapped for
//! usage by Rust code in the kernel and is shared by all of them.
//!
//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
//! modules written in Rust) depends on [`core`], [`alloc`] and this crate.
//!
//! If you need a kernel C API that is not ported or wrapped yet here, then
//! do so first instead of bypassing this crate.
#![no_std]
#![feature(
allocator_api,
alloc_error_handler,
const_fn,
const_mut_refs,
const_panic,
try_reserve
)]
#![deny(clippy::complexity)]
#![deny(clippy::correctness)]
#![deny(clippy::perf)]
#![deny(clippy::style)]
// Ensure conditional compilation based on the kernel configuration works;
// otherwise we may silently break things like initcall handling.
#[cfg(not(CONFIG_RUST))]
compile_error!("Missing kernel configuration for conditional compilation");
use core::panic::PanicInfo;
mod allocator;
#[doc(hidden)]
pub mod bindings;
pub mod buffer;
pub mod c_types;
pub mod chrdev;
mod error;
pub mod file_operations;
pub mod miscdev;
#[doc(hidden)]
pub mod module_param;
pub mod prelude;
pub mod print;
pub mod random;
mod static_assert;
pub mod sync;
#[cfg(CONFIG_SYSCTL)]
pub mod sysctl;
mod types;
pub mod user_ptr;
pub use crate::error::{Error, KernelResult};
pub use crate::types::{CStr, Mode};
/// Page size defined in terms of the `PAGE_SHIFT` macro from C.
///
/// [`PAGE_SHIFT`]: ../../../include/asm-generic/page.h
pub const PAGE_SIZE: usize = 1 << bindings::PAGE_SHIFT;
/// The top level entrypoint to implementing a kernel module.
///
/// For any teardown or cleanup operations, your type may implement [`Drop`].
pub trait KernelModule: Sized + Sync {
/// Called at module initialization time.
///
/// Use this method to perform whatever setup or registration your module
/// should do.
///
/// Equivalent to the `module_init` macro in the C API.
fn init() -> KernelResult<Self>;
}
/// Equivalent to `THIS_MODULE` in the C API.
///
/// C header: `include/linux/export.h`
pub struct ThisModule(*mut bindings::module);
// SAFETY: `THIS_MODULE` may be used from all threads within a module.
unsafe impl Sync for ThisModule {}
impl ThisModule {
/// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
///
/// # Safety
///
/// The pointer must be equal to the right `THIS_MODULE`.
pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
ThisModule(ptr)
}
/// Locks the module parameters to access them.
///
/// Returns a [`KParamGuard`] that will release the lock when dropped.
pub fn kernel_param_lock(&self) -> KParamGuard<'_> {
// SAFETY: `kernel_param_lock` will check if the pointer is null and
// use the built-in mutex in that case.
#[cfg(CONFIG_SYSFS)]
unsafe {
bindings::kernel_param_lock(self.0)
}
KParamGuard { this_module: self }
}
}
/// Scoped lock on the kernel parameters of [`ThisModule`].
///
/// Lock will be released when this struct is dropped.
pub struct KParamGuard<'a> {
this_module: &'a ThisModule,
}
#[cfg(CONFIG_SYSFS)]
impl<'a> Drop for KParamGuard<'a> {
fn drop(&mut self) {
// SAFETY: `kernel_param_lock` will check if the pointer is null and
// use the built-in mutex in that case. The existance of `self`
// guarantees that the lock is held.
unsafe { bindings::kernel_param_unlock(self.this_module.0) }
}
}
extern "C" {
fn rust_helper_BUG() -> !;
}
#[panic_handler]
fn panic(_info: &PanicInfo) -> ! {
unsafe {
rust_helper_BUG();
}
}
/// Calculates the offset of a field from the beginning of the struct it belongs to.
///
/// # Example
///
/// ```
/// struct Test {
/// a: u64,
/// b: u32,
/// }
///
/// fn test() {
/// // This prints `8`.
/// info!("{}", offset_of!(Test, b));
/// }
/// ```
#[macro_export]
macro_rules! offset_of {
($type:ty, $($f:tt)*) => {{
let tmp = core::mem::MaybeUninit::<$type>::uninit();
let outer = tmp.as_ptr();
// To avoid warnings when nesting `unsafe` blocks.
#[allow(unused_unsafe)]
// SAFETY: The pointer is valid and aligned, just not initialised; `addr_of` ensures that
// we don't actually read from `outer` (which would be UB) nor create an intermediate
// reference.
let inner = unsafe { core::ptr::addr_of!((*outer).$($f)*) } as *const u8;
// To avoid warnings when nesting `unsafe` blocks.
#[allow(unused_unsafe)]
// SAFETY: The two pointers are within the same allocation block.
unsafe { inner.offset_from(outer as *const u8) }
}}
}
/// Produces a pointer to an object from a pointer to one of its fields.
///
/// # Safety
///
/// Callers must ensure that the pointer to the field is in fact a pointer to the specified field,
/// as opposed to a pointer to another object of the same type.
///
/// # Example
///
/// ```
/// struct Test {
/// a: u64,
/// b: u32,
/// }
///
/// fn test() {
/// let test = Test { a: 10, b: 20 };
/// let b_ptr = &test.b;
/// let test_alias = unsafe { container_of!(b_ptr, Test, b) };
/// // This prints `true`.
/// info!("{}", core::ptr::eq(&test, test_alias));
/// }
/// ```
#[macro_export]
macro_rules! container_of {
($ptr:expr, $type:ty, $($f:tt)*) => {{
let offset = $crate::offset_of!($type, $($f)*);
($ptr as *const _ as *const u8).offset(-offset) as *const $type
}}
}
#[global_allocator]
static ALLOCATOR: allocator::KernelAllocator = allocator::KernelAllocator;