-
Notifications
You must be signed in to change notification settings - Fork 1
/
python_function.h
108 lines (88 loc) · 3.6 KB
/
python_function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#pragma once
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/custom_function.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/utils/object_ptr.h>
#include <c10/util/Optional.h>
#include <c10/core/DeviceGuard.h>
#include <vector>
#include <utility>
#include <memory>
namespace torch { namespace jit { struct Graph; }}
namespace torch { namespace autograd {
// A Function which is implemented by a Python object (i.e., a THPFunction).
// Calls to 'apply' are forwarded to the Python method implementation.
struct PyNode : public Node {
PyNode(THPObjectPtr obj) : obj(obj.release()) {}
variable_list apply(variable_list&& inputs) override;
variable_list legacy_apply(const variable_list& inputs);
void release_variables() override;
std::string name() const override;
bool is_traceable() override;
// THPFunction this Function is wrapping. Owning!
PyObject* obj;
~PyNode() {
// Can't use THPObjectPtr as a field in this class; destructor won't take
// out GIL! When I forgot to do this by hand
// TestAutograd.test_inplace_view_python called me out about it.
AutoGIL g;
Py_DECREF(obj);
}
};
/**
* Cast an object into a tuple, if it is not a tuple already. Returns true
* if the original object was not a tuple.
*/
inline bool ensure_tuple(THPObjectPtr& obj) {
if (PyTuple_Check(obj.get()))
return false;
PyObject *tuple = PyTuple_New(1);
if (!tuple) throw python_error();
PyTuple_SET_ITEM(tuple, 0, obj.release());
obj = tuple;
return true;
}
}} // namespace torch::autograd
struct THPFunction {
PyObject_HEAD
PyObject *needs_input_grad;
// Python tuple of tensors whose variables we should save. Set
// by Python with 'save_for_backward'. If nullptr, no tensors were
// saved.
PyObject *to_save;
// Python tuple of tensors which are not differentiable. Set by
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
// non-differentiable.
PyObject *non_differentiable;
// Python tuple of tensors which had inplace updates in the forward()
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
// modified inplace.
PyObject *dirty_tensors;
std::vector<torch::autograd::VariableInfo> output_info;
std::vector<torch::autograd::VariableInfo> input_info;
std::vector<torch::autograd::SavedVariable> saved_variables;
// For each input, true if the input is a THPVariable
std::vector<bool> is_variable_input;
char has_freed_buffers;
// The actual PyNode (in the autograd graph) that this data was
// saved for. This field may be NULL (because a user can construct
// a THPFunction directly from Python), but when this field is non-NULL,
// it is guaranteed that cdata.lock()->obj == this
//
// In most ordinary use, this field should always be non-NULL; e.g.,
// when we allocate a THPFunction because we are running Node.apply,
// after constructing a THPFunction, we immediately allocate a PyNode
// for it. We can't enforce this directly in the constructor of
// THPFunction though, because there's no way to keep it live long enough
// to save an owning reference to PyNode into the grad_fn of a Variable.
std::weak_ptr<torch::autograd::PyNode> cdata;
};
bool THPFunction_initModule(PyObject *module);
extern PyTypeObject THPFunctionType;
extern PyObject *THPFunctionClass;
inline bool THPFunction_Check(PyObject* obj) {
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
}