forked from huggingface/peft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_stablediffusion.py
200 lines (171 loc) · 7.62 KB
/
test_stablediffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, replace
from unittest import TestCase
import numpy as np
from diffusers import StableDiffusionPipeline
from parameterized import parameterized
from peft import LoHaConfig, LoraConfig, OFTConfig, get_peft_model
from .testing_common import ClassInstantier, PeftCommonTester
from .testing_utils import temp_seed
PEFT_DIFFUSERS_SD_MODELS_TO_TEST = ["hf-internal-testing/tiny-stable-diffusion-torch"]
CONFIG_TESTING_KWARGS = (
{
"text_encoder": {
"r": 8,
"lora_alpha": 32,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"lora_dropout": 0.0,
"bias": "none",
},
"unet": {
"r": 8,
"lora_alpha": 32,
"target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],
"lora_dropout": 0.0,
"bias": "none",
},
},
{
"text_encoder": {
"r": 8,
"alpha": 32,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"rank_dropout": 0.0,
"module_dropout": 0.0,
},
"unet": {
"r": 8,
"alpha": 32,
"target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],
"rank_dropout": 0.0,
"module_dropout": 0.0,
},
},
{
"text_encoder": {
"r": 8,
"target_modules": ["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
"module_dropout": 0.0,
},
"unet": {
"r": 8,
"target_modules": ["proj_in", "proj_out", "to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],
"module_dropout": 0.0,
},
},
)
CLASSES_MAPPING = {
"lora": (LoraConfig, CONFIG_TESTING_KWARGS[0]),
"loha": (LoHaConfig, CONFIG_TESTING_KWARGS[1]),
"lokr": (LoHaConfig, CONFIG_TESTING_KWARGS[1]),
"oft": (OFTConfig, CONFIG_TESTING_KWARGS[2]),
}
PeftStableDiffusionTestConfigManager = ClassInstantier(CLASSES_MAPPING)
class StableDiffusionModelTester(TestCase, PeftCommonTester):
r"""
Tests that diffusers StableDiffusion model works with PEFT as expected.
"""
transformers_class = StableDiffusionPipeline
def instantiate_sd_peft(self, model_id, config_cls, config_kwargs):
# Instantiate StableDiffusionPipeline
model = self.transformers_class.from_pretrained(model_id)
config_kwargs = config_kwargs.copy()
text_encoder_kwargs = config_kwargs.pop("text_encoder")
unet_kwargs = config_kwargs.pop("unet")
# the remaining config kwargs should be applied to both configs
for key, val in config_kwargs.items():
text_encoder_kwargs[key] = val
unet_kwargs[key] = val
# Instantiate text_encoder adapter
config_text_encoder = config_cls(**text_encoder_kwargs)
model.text_encoder = get_peft_model(model.text_encoder, config_text_encoder)
# Instantiate unet adapter
config_unet = config_cls(**unet_kwargs)
model.unet = get_peft_model(model.unet, config_unet)
# Move model to device
model = model.to(self.torch_device)
return model
def prepare_inputs_for_testing(self):
return {
"prompt": "a high quality digital photo of a cute corgi",
"num_inference_steps": 20,
}
@parameterized.expand(
PeftStableDiffusionTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"loha_kwargs": {"init_weights": [False]},
"oft_kwargs": {"init_weights": [False]},
},
)
)
def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs):
if config_cls in [LoHaConfig, OFTConfig]:
# TODO: This test is flaky with PyTorch 2.1 on Windows, we need to figure out what is going on
self.skipTest("LoHaConfig and OFTConfig test is flaky")
# Instantiate model & adapters
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
# Generate output for peft modified StableDiffusion
dummy_input = self.prepare_inputs_for_testing()
with temp_seed(seed=42):
peft_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
# Merge adapter and model
model.text_encoder = model.text_encoder.merge_and_unload()
model.unet = model.unet.merge_and_unload()
# Generate output for peft merged StableDiffusion
with temp_seed(seed=42):
merged_output = np.array(model(**dummy_input).images[0]).astype(np.float32)
# Images are in uint8 drange, so use large atol
self.assertTrue(np.allclose(peft_output, merged_output, atol=1.0))
@parameterized.expand(
PeftStableDiffusionTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
},
filter_params_func=lambda tests: [x for x in tests if all(s not in x[0] for s in ["loha", "lokr", "oft"])],
)
)
def test_add_weighted_adapter_base_unchanged(self, test_name, model_id, config_cls, config_kwargs):
# Instantiate model & adapters
model = self.instantiate_sd_peft(model_id, config_cls, config_kwargs)
# Get current available adapter config
text_encoder_adapter_name = next(iter(model.text_encoder.peft_config.keys()))
unet_adapter_name = next(iter(model.unet.peft_config.keys()))
text_encoder_adapter_config = replace(model.text_encoder.peft_config[text_encoder_adapter_name])
unet_adapter_config = replace(model.unet.peft_config[unet_adapter_name])
# Create weighted adapters
model.text_encoder.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
model.unet.add_weighted_adapter([unet_adapter_name], [0.5], "weighted_adapter_test")
# Assert that base adapters config did not change
self.assertTrue(
asdict(text_encoder_adapter_config) == asdict(model.text_encoder.peft_config[text_encoder_adapter_name])
)
self.assertTrue(asdict(unet_adapter_config) == asdict(model.unet.peft_config[unet_adapter_name]))
@parameterized.expand(
PeftStableDiffusionTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DIFFUSERS_SD_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"loha_kwargs": {"init_weights": [False]},
"lokr_kwargs": {"init_weights": [False]},
"oft_kwargs": {"init_weights": [False]},
},
)
)
def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_disable_adapter(model_id, config_cls, config_kwargs)