This repository has been archived by the owner on Nov 15, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 38
/
run_utils.py
197 lines (172 loc) · 8.65 KB
/
run_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import sys
import time
sys.stdout=sys.stderr
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
from language_model import LM
from common import CheckpointLoader
def run_train(dataset, hps, logdir, ps_device, task=0, master=""):
with tf.variable_scope("model"):
model = LM(hps, "train", ps_device)
stime = time.time()
print("Current time: %s" % stime)
print("ALL VARIABLES")
for v in tf.all_variables():
print("%s %s %s %s" % (v.name, v.get_shape(), v.dtype, v.device))
print("TRAINABLE VARIABLES")
for v in tf.trainable_variables():
print("%s %s %s %s" % (v.name, v.get_shape(), v.dtype, v.device))
print("LOCAL VARIABLES")
for v in tf.local_variables():
print("%s %s %s %s" % (v.name, v.get_shape(), v.dtype, v.device))
sv = tf.train.Supervisor(is_chief=(task == 0),
logdir=logdir,
summary_op=None, # Automatic summaries don't work with placeholders.
global_step=model.global_step,
save_summaries_secs=60*hps.save_summary_every_min,
save_model_secs=60*hps.save_model_every_min)
#save_summaries_secs=30,
#save_model_secs=120 * 5)
#config = tf.ConfigProto(allow_soft_placement=True,
# intra_op_parallelism_threads=2,
# inter_op_parallelism_threads=20)
config = tf.ConfigProto(allow_soft_placement=True)
with sv.managed_session(master, config=config) as sess:
# Slowly increase the number of workers during beginning of the training.
#while not sv.should_stop() and (time.time() - stime) < hps.max_time:
# step = int(sess.run(model.global_step))
# waiting_until_step = task * hps.num_delayed_steps
# if step >= waiting_until_step:
# break
# else:
# print("Current step is %d. Waiting until: %d" % (step, waiting_until_step))
# time.sleep(20.0)
local_step = 0
prev_global_step = sess.run(model.global_step)
cur_global_step = 0
prev_time = time.time()
data_iterator = dataset.iterate_forever(hps.batch_size * hps.num_gpus, hps.num_steps)
while not sv.should_stop() and (time.time() - stime) < hps.max_time:
fetches = [model.global_step, model.loss, model.train_op]
# Chief worker computes summaries every 100 steps.
should_compute_summary = (task == 0 and local_step % 100 == 0)
if should_compute_summary:
fetches += [model.summary_op]
#x, y, w = next(data_iterator)
x, y = next(data_iterator)
should_run_profiler = (hps.run_profiler and task == 0 and local_step % 1000 == 13)
if should_run_profiler:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
#fetched = sess.run(fetches, {model.x: x, model.y: y, model.w: w},
fetched = sess.run(fetches, {model.x: x, model.y: y},
options=run_options, run_metadata=run_metadata)
# Create the Timeline object, and write it to a json
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
print("Running profiler")
with open(logdir + "/timeline.json", 'w') as f:
f.write(ctf)
print("Finished profiling!")
else:
#fetched = sess.run(fetches, {model.x: x, model.y: y, model.w: w})
fetched = sess.run(fetches, {model.x: x, model.y: y})
cur_global_step = fetched[0]
local_step += 1
if should_compute_summary:
sv.summary_computed(sess, fetched[-1])
if local_step < 10 or local_step % 20 == 0:
cur_time = time.time()
num_words = hps.batch_size * hps.num_gpus * hps.num_steps
wps = (cur_global_step - prev_global_step) * num_words / (cur_time - prev_time)
prev_global_step = cur_global_step
print("Iteration %d, time = %.2fs, wps = %.0f, train loss = %.4f" % (
cur_global_step, cur_time - prev_time, wps, fetched[1]))
prev_time = cur_time
if local_step >= hps.max_steps:
break
#save last model
sv._saver.save(sess, sv.save_path, cur_global_step)
sv.stop()
def run_eval(dataset, hps, logdir, mode, num_eval_steps):
with tf.variable_scope("model"):
hps.num_sampled = 0 # Always using full softmax at evaluation.
hps.keep_prob = 1.0
#model = LM(hps, "eval", "/cpu:0")
model = LM(hps, "eval", "/gpu:0")
if hps.average_params:
print("Averaging parameters for evaluation.")
saver = tf.train.Saver(model.avg_dict)
else:
saver = tf.train.Saver()
# Use only 4 threads for the evaluation.
#config = tf.ConfigProto(allow_soft_placement=True,
# intra_op_parallelism_threads=20,
# inter_op_parallelism_threads=1)
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
sw = tf.summary.FileWriter(logdir + "/" + mode, sess.graph)
ckpt_loader = CheckpointLoader(saver, model.global_step, logdir + "/train")
with sess.as_default():
while ckpt_loader.load_checkpoint():
global_step = ckpt_loader.last_global_step
data_iterator = dataset.iterate_once(hps.batch_size * hps.num_gpus, hps.num_steps)
#tf.initialize_local_variables().run()
tf.local_variables_initializer().run()
loss_nom = 0.0
loss_den = 0.0
#for i, (x, y, w) in enumerate(data_iterator):
for i, (x, y) in enumerate(data_iterator):
if i >= num_eval_steps and mode!="eval_full":
break
#loss = sess.run(model.loss, {model.x: x, model.y: y, model.w: w})
loss = sess.run(model.loss, {model.x: x, model.y: y})
loss_nom += loss
loss_den += 1 # ???
#loss_den += w.mean()
loss = loss_nom / loss_den
sys.stdout.write("%d: %.3f (%.3f) ... " % (i, loss, np.exp(loss)))
sys.stdout.flush()
sys.stdout.write("\n")
log_perplexity = loss_nom / loss_den
print("Results at %d: log_perplexity = %.3f perplexity = %.3f" % (
global_step, log_perplexity, np.exp(log_perplexity)))
summary = tf.Summary()
summary.value.add(tag='eval/log_perplexity', simple_value=log_perplexity)
summary.value.add(tag='eval/perplexity', simple_value=np.exp(log_perplexity))
sw.add_summary(summary, global_step)
sw.flush()
if mode == "eval_full":
break #we don't need to wait for other checkpoints in this mode
def run_infer(dataset, hps, logdir, mode, vocab):
with tf.variable_scope("model"):
hps.num_sampled = -1 # This will tell model to skip the loss part
hps.keep_prob = 1.0
# model = LM(hps, "eval", "/cpu:0")
model = LM(hps, "eval", "/gpu:0")
if hps.average_params:
print("Averaging parameters for evaluation.")
saver = tf.train.Saver(model.avg_dict)
else:
saver = tf.train.Saver()
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
sw = tf.summary.FileWriter(logdir + "/" + mode, sess.graph)
ckpt_loader = CheckpointLoader(saver, model.global_step, logdir + "/train")
with sess.as_default():
while ckpt_loader.load_checkpoint():
global_step = ckpt_loader.last_global_step
data_iterator = dataset.iterate_once(hps.batch_size * hps.num_gpus, hps.num_steps)
tf.local_variables_initializer().run()
for i, (x, y) in enumerate(data_iterator):
# loss = sess.run(model.loss, {model.x: x, model.y: y, model.w: w})
samples = sess.run(model.samples, {model.x: x, model.y: y})
if i % 100 == 0:
print("SAMPLES")
print([vocab.get_token(int(t)) for t in samples])
print("TARGETS")
print([vocab.get_token(int(t)) for t in y[0]])
#sys.stdout.write("%d: %.3f (%.3f) ... " % (i, loss, np.exp(loss)))
#sys.stdout.flush()
#sys.stdout.write("\n")