Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Irony not recognized enough by this library #15

Open
nnworkspace opened this issue Jul 8, 2024 · 1 comment
Open

Irony not recognized enough by this library #15

nnworkspace opened this issue Jul 8, 2024 · 1 comment

Comments

@nnworkspace
Copy link

Hi Oliver,

thank you very much for this library, this is easy to use, pretty accurate at scoring German sentiments, runs fast and we like it very much!

But now we saw that this lib is not very good at detecting the irony in the text. Examples:

{
        ...
        "text": "Wir müssen alles (!) tun um den digitalen Euro als CBDC zu verhindern. ALLES!!! Ich habe dazu einen Roman verfasst, der hoffentlich NIE wahr wird, aber mit CBDCs leicht wahr werden kann",
        "sentiment": {
            "class_type": "neutral",
            "positive_score": 0.05654817819595337,
            "negative_score": 0.39234355092048645,
            "neutral_score": 0.5511082410812378
        }
    },
    {
        ...
        "text": "Das staatliche Geldmonopol ist ein maximales Erfolgsmodell: https://www.bitrawr.com/demonetized-currencies. Das war heute an Halloween der gruseligste Post, den ich gesehen habe. Chapeau :-).",
        "sentiment": {
            "class_type": "neutral",
            "positive_score": 0.002023849170655012,
            "negative_score": 0.010454664006829262,
            "neutral_score": 0.9875214695930481
        }
    },
   {
        ...
        "text": "Ich bin zu 100% von dem digitalen EURO überzeugt und würde SOFORT wechseln. Für Aluhutträger und sonstige Schlafschafe wäre ja immer noch BTC eine gute Alternative...weil selbst im Hartgeld Ortungschips eingebaut sind.",
        "sentiment": {
            "class_type": "positive",
            "positive_score": 0.938581109046936,
            "negative_score": 0.05730881169438362,
            "neutral_score": 0.004110132809728384
        }
    },

All three above text actually expressed negative sentiments. But all of them were classified as neutral or negative.

Is there any way to fix this? :-)

Best,
Nicole

@oliverguhr
Copy link
Owner

Hi @nnworkspace,
thanks for the feedback. The model was not trained for irony. The best way would be to fine-tune it with a (small) dataset containing of irony examples.

Contact me if you need professional support :)

Best Oliver

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants