-
Notifications
You must be signed in to change notification settings - Fork 56
/
live_vad_asr.py
239 lines (195 loc) · 9.39 KB
/
live_vad_asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import collections
import queue
from wav2vec2_inference import Wave2Vec2Inference
import numpy as np
import pyaudio
import webrtcvad
from halo import Halo
import torch
import torchaudio
from rx.subject import BehaviorSubject
import time
from sys import exit
class Audio(object):
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""
FORMAT = pyaudio.paInt16
# Network/VAD rate-space
RATE_PROCESS = 16000
CHANNELS = 1
BLOCKS_PER_SECOND = 50
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS):
def proxy_callback(in_data, frame_count, time_info, status):
#pylint: disable=unused-argument
callback(in_data)
return (None, pyaudio.paContinue)
if callback is None:
def callback(in_data): return self.buffer_queue.put(in_data)
self.buffer_queue = queue.Queue()
self.device = device
self.input_rate = input_rate
self.sample_rate = self.RATE_PROCESS
self.block_size = int(self.RATE_PROCESS /
float(self.BLOCKS_PER_SECOND))
self.block_size_input = int(
self.input_rate / float(self.BLOCKS_PER_SECOND))
self.pa = pyaudio.PyAudio()
kwargs = {
'format': self.FORMAT,
'channels': self.CHANNELS,
'rate': self.input_rate,
'input': True,
'frames_per_buffer': self.block_size_input,
'stream_callback': proxy_callback,
}
self.chunk = None
# if not default device
if self.device:
kwargs['input_device_index'] = self.device
self.stream = self.pa.open(**kwargs)
self.stream.start_stream()
def read(self):
"""Return a block of audio data, blocking if necessary."""
return self.buffer_queue.get()
def destroy(self):
self.stream.stop_stream()
self.stream.close()
self.pa.terminate()
frame_duration_ms = property(
lambda self: 1000 * self.block_size // self.sample_rate)
class VADAudio(Audio):
"""Filter & segment audio with voice activity detection."""
def __init__(self, aggressiveness=3, device=None, input_rate=None):
super().__init__(device=device, input_rate=input_rate)
self.vad = webrtcvad.Vad(aggressiveness)
def frame_generator(self):
"""Generator that yields all audio frames from microphone."""
if self.input_rate == self.RATE_PROCESS:
while True:
yield self.read()
else:
raise Exception("Resampling required")
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
|---utterence---| |---utterence---|
"""
if frames is None:
frames = self.frame_generator()
num_padding_frames = padding_ms // self.frame_duration_ms
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
for frame in frames:
if len(frame) < 640:
return
is_speech = self.vad.is_speech(frame, self.sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > ratio * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
yield f
ring_buffer.clear()
else:
yield frame
ring_buffer.append((frame, is_speech))
num_unvoiced = len(
[f for f, speech in ring_buffer if not speech])
if num_unvoiced > ratio * ring_buffer.maxlen:
triggered = False
yield None
ring_buffer.clear()
def main(ARGS):
model_name = "oliverguhr/wav2vec2-large-xlsr-53-german-cv9"
wave_buffer = BehaviorSubject(np.array([]))
wave2vec_asr = Wave2Vec2Inference(model_name)
wave_buffer.subscribe(
on_next=lambda x: asr_output_formatter(wave2vec_asr, x))
# Start audio with VAD
vad_audio = VADAudio(aggressiveness=ARGS.webRTC_aggressiveness,
device=ARGS.device,
input_rate=ARGS.rate)
print("Listening (ctrl-C to exit)...")
frames = vad_audio.vad_collector()
# load silero VAD
torchaudio.set_audio_backend("soundfile")
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model=ARGS.silaro_model_name,
force_reload=ARGS.reload,
onnx=True)
(get_speech_timestamps,save_audio,read_audio,VADIterator,collect_chunks) = utils
# Stream from microphone to Wav2Vec 2.0 using VAD
print("audio length\tinference time\ttext")
spinner = None
if not ARGS.nospinner:
spinner = Halo(spinner='line')
wav_data = bytearray()
try:
for frame in frames:
if frame is not None:
if spinner:
spinner.start()
wav_data.extend(frame)
else:
if spinner:
spinner.stop()
#print("webRTC has detected a possible speech")
newsound = np.frombuffer(wav_data, np.int16)
audio_float32 = Int2FloatSimple(newsound)
time_stamps = get_speech_timestamps(audio_float32, model, sampling_rate=ARGS.rate)
if(len(time_stamps) > 0):
#print("silero VAD has detected a possible speech")
wave_buffer.on_next(audio_float32.numpy())
else:
print("VAD detected noise")
wav_data = bytearray()
except KeyboardInterrupt:
exit()
def asr_output_formatter(asr, audio):
start = time.perf_counter()
text = asr.buffer_to_text(audio)
inference_time = time.perf_counter()-start
sample_length = len(audio) / DEFAULT_SAMPLE_RATE
print(f"{sample_length:.3f}s\t{inference_time:.3f}s\t{text}")
def Int2FloatSimple(sound):
return torch.from_numpy(np.frombuffer(sound, dtype=np.int16).astype('float32') / 32767)
def Int2Float(sound):
"""converts the format and normalizes the data"""
_sound = np.copy(sound) #
abs_max = np.abs(_sound).max()
_sound = _sound.astype('float32')
if abs_max > 0:
_sound *= 1/abs_max
audio_float32 = torch.from_numpy(_sound.squeeze())
return audio_float32
if __name__ == '__main__':
DEFAULT_SAMPLE_RATE = 16000
import argparse
parser = argparse.ArgumentParser(
description="Stream from microphone to webRTC and silero VAD")
parser.add_argument('-v', '--webRTC_aggressiveness', type=int, default=3,
help="Set aggressiveness of webRTC: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
parser.add_argument('--nospinner', action='store_true',
help="Disable spinner")
parser.add_argument('-d', '--device', type=int, default=None,
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
parser.add_argument('-name', '--silaro_model_name', type=str, default="silero_vad",
help="select the name of the model. You can select between 'silero_vad',''silero_vad_micro','silero_vad_micro_8k','silero_vad_mini','silero_vad_mini_8k'")
parser.add_argument('--reload', action='store_true',
help="download the last version of the silero vad")
parser.add_argument('-ts', '--trig_sum', type=float, default=0.25,
help="overlapping windows are used for each audio chunk, trig sum defines average probability among those windows for switching into triggered state (speech state)")
parser.add_argument('-nts', '--neg_trig_sum', type=float, default=0.07,
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
parser.add_argument('-N', '--num_steps', type=int, default=8,
help="nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)")
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
parser.add_argument('-msps', '--min_speech_samples', type=int, default=10000,
help="minimum speech chunk duration in samples")
parser.add_argument('-msis', '--min_silence_samples', type=int, default=500,
help=" minimum silence duration in samples between to separate speech chunks")
ARGS = parser.parse_args()
ARGS.rate = DEFAULT_SAMPLE_RATE
main(ARGS)