forked from seniorgoogles/quant_yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_onnx.py
61 lines (42 loc) · 1.53 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import os
import sys
import platform
from pathlib import Path
import torch
from brevitas.export import export_brevitas_onnx
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights',type=str, default='experiment_models/lpyolo_W4A4.pt', help='model.pt path(s)')
parser.add_argument('--cfg', type=str, default='models/lpyolo_quant.yaml', help='model config')
parser.add_argument('--classes', type=int, default=7, help='number of classes')
parser.add_argument('--output_dir',type=str,default='experiment_models')
opt = parser.parse_args()
return opt
def main(opt):
model = torch.hub.load(
'.',
'custom',
str(opt.weights),
source='local',
classes = 7,
force_reload=True,
cfg = str(opt.cfg),
)
IN_CH = 384
OUT_CH = 640
BATCH_SIZE = 1
model_no_detect = torch.nn.Sequential(*[model.model.model.model[i] for i in range(15)])
model_name = opt.weights.split("/")[-1].replace(".pt","")
path = f'{opt.output_dir}/{model_name}.onnx'
inp = torch.randn(BATCH_SIZE,3, IN_CH, OUT_CH).cuda()
detection_model = model_no_detect
detection_model.cuda()
detection_model.eval()
exported_model = export_brevitas_onnx(detection_model, inp, path)
detect_module = model.model.model.model[15]
torch.save(detect_module.state_dict(), f'{opt.output_dir}/detect_module.pt')
print(f"saving complete to {opt.output_dir}")
if __name__ == '__main__':
opt = parse_opt()
main(opt)