-
Notifications
You must be signed in to change notification settings - Fork 24
/
loss_tro.py
73 lines (62 loc) · 2.51 KB
/
loss_tro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import Levenshtein as Lev
from load_data import vocab_size, tokens, num_tokens, index2letter
def recon_criterion(predict, target):
return torch.mean(torch.abs(predict - target))
class LabelSmoothing(torch.nn.Module):
"Implement label smoothing."
def __init__(self, size, padding_idx, smoothing=0.0):
super(LabelSmoothing, self).__init__()
self.criterion = torch.nn.KLDivLoss(reduction='sum')
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.detach().clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1, target.detach().unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.detach() == self.padding_idx)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
if true_dist.requires_grad:
print('Error! true_dist should not requires_grad!')
return self.criterion(x, true_dist)
log_softmax = torch.nn.LogSoftmax(dim=-1)
crit = LabelSmoothing(vocab_size, tokens['PAD_TOKEN'], 0.4)
def fine(label_list):
if type(label_list) != type([]):
return [label_list]
else:
return label_list
class CER():
def __init__(self):
self.ed = 0
self.len = 0
def add(self, pred, gt):
pred_label = torch.topk(pred, 1, dim=-1)[1].squeeze(-1) # b,t,83->b,t,1->b,t
pred_label = pred_label.cpu().numpy()
batch_size = pred_label.shape[0]
eds = list()
lens = list()
for i in range(batch_size):
pred_text = pred_label[i].tolist()
gt_text = gt[i].cpu().numpy().tolist()
gt_text = fine(gt_text)
pred_text = fine(pred_text)
for j in range(num_tokens):
gt_text = list(filter(lambda x: x!=j, gt_text))
pred_text = list(filter(lambda x: x!=j, pred_text))
gt_text = ''.join([index2letter[c-num_tokens] for c in gt_text])
pred_text = ''.join([index2letter[c-num_tokens] for c in pred_text])
ed_value = Lev.distance(pred_text, gt_text)
eds.append(ed_value)
lens.append(len(gt_text))
self.ed += sum(eds)
self.len += sum(lens)
def fin(self):
return 100 * (self.ed / self.len)