forked from facebookresearch/Detectron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_proposal_labels.py
54 lines (47 loc) · 2.23 KB
/
generate_proposal_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
from detectron.datasets import json_dataset
from detectron.datasets import roidb as roidb_utils
from detectron.utils import blob as blob_utils
import detectron.roi_data.fast_rcnn as fast_rcnn_roi_data
logger = logging.getLogger(__name__)
class GenerateProposalLabelsOp(object):
def forward(self, inputs, outputs):
"""See modeling.detector.GenerateProposalLabels for inputs/outputs
documentation.
"""
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
rois = inputs[0].data
roidb = blob_utils.deserialize(inputs[1].data)
im_info = inputs[2].data
im_scales = im_info[:, 2]
output_blob_names = fast_rcnn_roi_data.get_fast_rcnn_blob_names()
# For historical consistency with the original Faster R-CNN
# implementation we are *not* filtering crowd proposals.
# This choice should be investigated in the future (it likely does
# not matter).
json_dataset.add_proposals(roidb, rois, im_scales, crowd_thresh=0)
roidb_utils.add_bbox_regression_targets(roidb)
blobs = {k: [] for k in output_blob_names}
fast_rcnn_roi_data.add_fast_rcnn_blobs(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])