-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel.h
87 lines (78 loc) · 2.33 KB
/
parallel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#pragma once
#include "vector.h"
#include <mutex>
#include <condition_variable>
#include <functional>
#include <atomic>
#include <cstdint>
#include <cassert>
// From https://github.com/mmp/pbrt-v3/blob/master/src/core/parallel.h
class Barrier {
public:
Barrier(int count) : count(count) { assert(count > 0); }
~Barrier() { assert(count == 0); }
void Wait();
private:
std::mutex mutex;
std::condition_variable cv;
int count;
};
void parallel_for_host(const std::function<void(int64_t)> &func,
int64_t count,
int chunkSize = 1);
extern thread_local int ThreadIndex;
void parallel_for_host(
std::function<void(Vector2i)> func, const Vector2i count);
int num_system_cores();
void parallel_init();
void parallel_cleanup();
#ifdef __CUDACC__
template <typename T>
__global__ void parallel_for_device_kernel(T functor, int count) {
auto idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= count) {
return;
}
functor(idx);
}
template <typename T>
inline void parallel_for_device(T functor,
int count,
int work_per_thread = 256) {
if (count <= 0) {
return;
}
auto block_size = work_per_thread;
auto block_count = idiv_ceil(count, block_size);
parallel_for_device_kernel<T><<<block_count, block_size>>>(functor, count);
}
#endif
template <typename T>
inline void parallel_for(T functor,
int count,
bool use_gpu,
int work_per_thread = 256) {
if (count <= 0) {
return;
}
if (use_gpu) {
#ifdef __CUDACC__
auto block_size = work_per_thread;
auto block_count = idiv_ceil(count, block_size);
parallel_for_device_kernel<T><<<block_count, block_size>>>(functor, count);
#else
assert(false);
#endif
} else {
auto num_threads = idiv_ceil(count, work_per_thread);
parallel_for_host([&](int thread_index) {
auto id_offset = work_per_thread * thread_index;
auto work_end = std::min(id_offset + work_per_thread, count);
for (int work_id = id_offset; work_id < work_end; work_id++) {
auto idx = work_id;
assert(idx < count);
functor(idx);
}
}, num_threads);
}
}