forked from Z3Prover/z3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hs.py
493 lines (447 loc) · 17 KB
/
hs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#
# Unweighted hitting set maxsat solver.
# interleaved with local hill-climbing improvements
# and also maxres relaxation steps to reduce number
# of soft constraints.
#
from z3 import *
import random
counter = 0
def add_def(s, fml):
global counter
name = Bool(f"def-{counter}")
counter += 1
s.add(name == fml)
return name
def relax_core(s, core, Fs):
core = list(core)
if len(core) == 0:
return
prefix = BoolVal(True)
Fs -= { f for f in core }
for i in range(len(core)-1):
prefix = add_def(s, And(core[i], prefix))
Fs |= { add_def(s, Or(prefix, core[i+1])) }
def restrict_cs(s, cs, Fs):
cs = list(cs)
if len(cs) == 0:
return
prefix = BoolVal(False)
Fs -= { f for f in cs }
for i in range(len(cs)-1):
prefix = add_def(s, Or(cs[i], prefix))
Fs |= { add_def(s, And(prefix, cs[i+1])) }
def count_sets_by_size(sets):
sizes = {}
for core in sets:
sz = len(core)
if sz not in sizes:
sizes[sz] = 0
sizes[sz] += 1
sizes = list(sizes.items())
sizes = sorted(sizes, key = lambda p : p[0])
print(sizes)
#set_param("sat.euf", True)
#set_param("tactic.default_tactic","sat")
#set_param("sat.cardinality.solver",False)
#set_param("sat.cardinality.encoding", "circuit")
#set_param(verbose=1)
class Soft:
def __init__(self, soft):
self.formulas = set(soft)
self.original_soft = soft.copy()
self.offset = 0
self.init_names()
def init_names(self):
self.name2formula = { Bool(f"s{s}") : s for s in self.formulas }
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
#
# TODO: try to replace this by a recursive invocation of HsMaxSAT
# such that the invocation is incremental with respect to adding constraints
# and has resource bounded invocation.
#
class HsPicker:
def __init__(self, soft):
self.soft = soft
self.opt_backoff_limit = 0
self.opt_backoff_count = 0
self.timeout_value = 6000
def pick_hs_(self, Ks, lo):
hs = set()
for ks in Ks:
if not any(k in ks for k in hs):
h = random.choice([h for h in ks])
hs = hs | { h }
print("approximate hitting set", len(hs), "smallest possible size", lo)
return hs, lo
#
# This can improve lower bound, but is expensive.
# Note that Z3 does not work well for hitting set optimization.
# MIP solvers contain better
# tuned approaches thanks to LP lower bounds and likely other properties.
# Would be nice to have a good hitting set
# heuristic built into Z3....
#
def pick_hs(self, Ks, lo):
if len(Ks) == 0:
return set(), lo
if self.opt_backoff_count < self.opt_backoff_limit:
self.opt_backoff_count += 1
return self.pick_hs_(Ks, lo)
opt = Optimize()
for k in Ks:
opt.add(Or([self.soft.formula2name[f] for f in k]))
for n in self.soft.formula2name.values():
obj = opt.add_soft(Not(n))
opt.set("timeout", self.timeout_value)
is_sat = opt.check()
lo = max(lo, opt.lower(obj).as_long())
self.opt_backoff_count = 0
if is_sat == sat:
if self.opt_backoff_limit > 1:
self.opt_backoff_limit -= 1
self.timeout_value += 500
mdl = opt.model()
hs = [self.soft.name2formula[n] for n in self.soft.formula2name.values() if is_true(mdl.eval(n))]
return set(hs), lo
else:
print("Timeout", self.timeout_value, "lo", lo, "limit", self.opt_backoff_limit)
self.opt_backoff_limit += 1
self.timeout_value += 500
return self.pick_hs_(Ks, lo)
class HsMaxSAT:
def __init__(self, soft, s):
self.s = s # solver object
self.soft = Soft(soft) # Soft constraints
self.hs = HsPicker(self.soft) # Pick a hitting set
self.model = None # Current best model
self.lo = 0 # Current lower bound
self.hi = len(soft) # Current upper bound
self.Ks = [] # Set of Cores
self.Cs = [] # Set of correction sets
self.small_set_size = 6
self.small_set_threshold = 1
self.num_max_res_failures = 0
self.corr_set_enabled = True
self.patterns = []
def has_many_small_sets(self, sets):
small_count = len([c for c in sets if len(c) <= self.small_set_size])
return self.small_set_threshold <= small_count
def get_small_disjoint_sets(self, sets):
hs = set()
result = []
min_size = min(len(s) for s in sets)
def insert(bound, sets, hs, result):
for s in sets:
if len(s) == bound and not any(c in hs for c in s):
result += [s]
hs = hs | set(s)
return hs, result
for sz in range(min_size, min_size + 3):
hs, result = insert(sz, sets, hs, result)
return result
def reinit_soft(self, num_cores_relaxed):
self.soft.init_names()
self.soft.offset += num_cores_relaxed
self.Ks = []
self.Cs = []
self.lo -= num_cores_relaxed
print("New offset", self.soft.offset)
def maxres(self):
#
# If there are sufficiently many small cores, then
# we reduce the soft constraints by maxres.
#
if self.has_many_small_sets(self.Ks) or (not self.corr_set_enabled and not self.has_many_small_sets(self.Cs) and self.num_max_res_failures > 0):
self.num_max_res_failures = 0
cores = self.get_small_disjoint_sets(self.Ks)
for core in cores:
self.small_set_size = max(4, min(self.small_set_size, len(core) - 2))
relax_core(self.s, core, self.soft.formulas)
self.reinit_soft(len(cores))
self.corr_set_enabled = True
return
#
# If there are sufficiently many small correction sets, then
# we reduce the soft constraints by dual maxres (IJCAI 2015)
#
# TODO: the heuristic for when to invoking correction set restriction
# needs fine-tuning. For example, the if min(Ks)*optimality_gap < min(Cs)*(max(SS))
# we might want to prioritize core relaxation to make progress with less overhead.
# here: max(SS) = |Soft|-min(Cs) is the size of the maximal satisfying subset
# the optimality gap is self.hi - self.offset
# which is a bound on how many cores have to be relaxed before determining optimality.
#
if self.corr_set_enabled and self.has_many_small_sets(self.Cs):
self.num_max_res_failures = 0
cs = self.get_small_disjoint_sets(self.Cs)
for corr_set in cs:
print("restrict cs", len(corr_set))
# self.small_set_size = max(4, min(self.small_set_size, len(corr_set) - 2))
restrict_cs(self.s, corr_set, self.soft.formulas)
self.s.add(Or(corr_set))
self.reinit_soft(0)
self.corr_set_enabled = False
return
#
# Increment the failure count. If the failure count reaches a threshold
# then increment the lower bounds for performing maxres or dual maxres
#
self.num_max_res_failures += 1
print("Small set size", self.small_set_size, "num skips", self.num_max_res_failures)
if self.num_max_res_failures > 3:
self.num_max_res_failures = 0
self.small_set_size += 100
def pick_hs(self):
hs, self.lo = self.hs.pick_hs(self.Ks, self.lo)
return hs
def save_model(self):
#
# You can save a model here.
# For example, add the string: self.model.sexpr()
# to a file, or print bounds in custom format.
#
# print(f"Bound: {self.lo}")
# for f in self.soft.original_soft:
# print(f"{f} := {self.model.eval(f)}")
pass
def add_pattern(self, orig_cs):
named = { f"{f}" : f for f in self.soft.original_soft }
sorted_names = sorted(named.keys())
sorted_soft = [named[f] for f in sorted_names]
bits = [1 if f not in orig_cs else 0 for f in sorted_soft]
def eq_bits(b1, b2):
return all(b1[i] == b2[i] for i in range(len(b1)))
def num_overlaps(b1, b2):
return sum(b1[i] == b2[i] for i in range(len(b1)))
if not any(eq_bits(b, bits) for b in self.patterns):
if len(self.patterns) > 0:
print(num_overlaps(bits, self.patterns[-1]), len(bits), bits)
self.patterns += [bits]
counts = [sum(b[i] for b in self.patterns) for i in range(len(bits))]
print(counts)
#
# Crude, quick core reduction attempt
#
def reduce_core(self, core):
s = self.s
if len(core) <= 4:
return core
s.set("timeout", 200)
i = 0
num_undef = 0
orig_len = len(core)
core = list(core)
while i < len(core):
is_sat = s.check([core[j] for j in range(len(core)) if j != i])
if is_sat == unsat:
core = s.unsat_core()
elif is_sat == sat:
self.improve(s.model())
bound = self.hi - self.soft.offset - 1
else:
num_undef += 1
if num_undef > 3:
break
i += 1
print("Reduce", orig_len, "->", len(core), "iterations", i, "unknown", num_undef)
s.set("timeout", 100000000)
return core
def improve(self, new_model):
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
cs = self.soft.formulas - mss
self.Cs += [cs]
orig_cs = { f for f in self.soft.original_soft if not is_true(new_model.eval(f)) }
cost = len(orig_cs)
if self.model is None:
self.model = new_model
if cost <= self.hi:
self.add_pattern(orig_cs)
print("improve", self.hi, cost)
self.model = new_model
self.save_model()
assert self.model
if cost < self.hi:
self.hi = cost
return True
return False
def try_rotate(self, mss):
backbones = set()
backbone2core = {}
ps = self.soft.formulas - mss
num_sat = 0
num_unsat = 0
improved = False
while len(ps) > 0:
p = random.choice([p for p in ps])
ps = ps - { p }
is_sat = self.s.check(mss | backbones | { p })
if is_sat == sat:
mdl = self.s.model()
mss = mss | {p}
ps = ps - {p}
if self.improve(mdl):
improved = True
num_sat += 1
elif is_sat == unsat:
backbones = backbones | { Not(p) }
core = set()
for c in self.s.unsat_core():
if c in backbone2core:
core = core | backbone2core[c]
else:
core = core | { c }
if len(core) < 20:
self.Ks += [core]
backbone2core[Not(p)] = set(core) - { p }
num_unsat += 1
else:
print("unknown")
print("rotate-1 done, sat", num_sat, "unsat", num_unsat)
if improved:
self.mss_rotate(mss, backbone2core)
return improved
def mss_rotate(self, mss, backbone2core):
counts = { c : 0 for c in mss }
max_count = 0
max_val = None
for core in backbone2core.values():
for c in core:
assert c in mss
counts[c] += 1
if max_count < counts[c]:
max_count = counts[c]
max_val = c
print("rotate max-count", max_count, "num occurrences", len({c for c in counts if counts[c] == max_count}))
print("Number of plateaus", len({ c for c in counts if counts[c] <= 1 }))
for c in counts:
if counts[c] > 1:
print("try-rotate", counts[c])
if self.try_rotate(mss - { c }):
break
def local_mss(self, new_model):
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
########################################
# test effect of random sub-sampling
#
#mss = list(mss)
#ms = set()
#for i in range(len(mss)//2):
# ms = ms | { random.choice([p for p in mss]) }
#mss = ms
####
ps = self.soft.formulas - mss
backbones = set()
qs = set()
backbone2core = {}
while len(ps) > 0:
p = random.choice([p for p in ps])
ps = ps - { p }
is_sat = self.s.check(mss | backbones | { p })
print(len(ps), is_sat)
sys.stdout.flush()
if is_sat == sat:
mdl = self.s.model()
rs = { p }
#
# by commenting this out, we use a more stubborn exploration
# by using the random seed as opposed to current model as a guide
# to what gets satisfied.
#
# Not sure if it really has an effect.
# rs = rs | { q for q in ps if is_true(mdl.eval(q)) }
#
rs = rs | { q for q in qs if is_true(mdl.eval(q)) }
mss = mss | rs
ps = ps - rs
qs = qs - rs
if self.improve(mdl):
self.mss_rotate(mss, backbone2core)
elif is_sat == unsat:
core = set()
for c in self.s.unsat_core():
if c in backbone2core:
core = core | backbone2core[c]
else:
core = core | { c }
core = self.reduce_core(core)
self.Ks += [core]
backbone2core[Not(p)] = set(core) - { p }
backbones = backbones | { Not(p) }
else:
qs = qs | { p }
if len(qs) > 0:
print("Number undetermined", len(qs))
def unsat_core(self):
core = self.s.unsat_core()
return self.reduce_core(core)
def get_cores(self, hs):
core = self.unsat_core()
remaining = self.soft.formulas - hs
num_cores = 0
cores = [core]
if len(core) == 0:
self.lo = self.hi - self.soft.offset
return
while True:
is_sat = self.s.check(remaining)
if unsat == is_sat:
core = self.unsat_core()
if len(core) == 0:
self.lo = self.hi - self.soft.offset
return
cores += [core]
h = random.choice([c for c in core])
remaining = remaining - { h }
elif sat == is_sat and num_cores == len(cores):
self.local_mss(self.s.model())
break
elif sat == is_sat:
self.improve(self.s.model())
#
# Extend the size of the hitting set using the new cores
# and update remaining using these cores.
# The new hitting set contains at least one new element
# from the original cores
#
hs = hs | { random.choice([c for c in cores[i]]) for i in range(num_cores, len(cores)) }
remaining = self.soft.formulas - hs
num_cores = len(cores)
else:
print(is_sat)
break
self.Ks += [set(core) for core in cores]
print("total number of cores", len(self.Ks))
print("total number of correction sets", len(self.Cs))
def step(self):
soft = self.soft
hs = self.pick_hs()
is_sat = self.s.check(soft.formulas - set(hs))
if is_sat == sat:
self.improve(self.s.model())
elif is_sat == unsat:
self.get_cores(hs)
else:
print("unknown")
print("maxsat [", self.lo + soft.offset, ", ", self.hi, "]","offset", soft.offset)
count_sets_by_size(self.Ks)
count_sets_by_size(self.Cs)
self.maxres()
def run(self):
while self.lo + self.soft.offset < self.hi:
self.step()
#set_option(verbose=1)
def main(file):
s = Solver()
opt = Optimize()
opt.from_file(file)
s.add(opt.assertions())
#
# We just assume this is an unweighted MaxSAT optimization problem.
# Weights are ignored.
#
soft = [f.arg(0) for f in opt.objectives()[0].children()]
hs = HsMaxSAT(soft, s)
hs.run()
if __name__ == '__main__':
main(sys.argv[1])