forked from drethage/fully-convolutional-point-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
319 lines (230 loc) · 12.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
""" inference.py - Implements functions for evaluating a model and using it to predict on new data. """
from __future__ import division
import sys
sys.path.append('util')
import os
import time
import util
import numpy as np
import tensorflow as tf
import fcpn
import data
import glob
def voxelgrid_predictions_to_point_cloud(voxelgrid, voxel_size, points, unoccupied_class):
""" Maps predictions made by the model onto points. Consider all voxels adjacent to a point.
Args:
voxelgrid: np.array
voxel_size: float
points: np.array
unoccupied_class: int, id of unoccupied class
Returns: list[int]
"""
predicted_labels = []
for point in points:
point_index_in_predictions = (point / voxel_size).astype(dtype=int)
predicted_label = None
for x_offset in [0, -1, 1]:
for y_offset in [0, -1, 1]:
for z_offset in [0, -1, 1]:
predicted_label = voxelgrid[point_index_in_predictions[0] + x_offset, point_index_in_predictions[1] + y_offset, point_index_in_predictions[2] + z_offset]
if predicted_label != unoccupied_class:
break
if predicted_label != unoccupied_class:
break
if predicted_label != unoccupied_class:
break
predicted_labels.append(predicted_label)
return predicted_labels
def setup_model(model, receptive_field_size, num_input_points, pointnet_spacing, num_learnable_classes, checkpoint_path, device):
""" Sets up the model, restoring weights from a checkpoint at checkpoint_path.
Args:
receptive_field_size: np.array
num_input_points: int
pointnet_spacing: float
num_learnable_classes: int
checkpoint_path: string
device: string
Returns: tf.session, dict, tf.tensor, np.array, np.array
"""
input_volume_origin = np.array([0,0,0])
num_pointnets = np.prod(model.get_feature_volume_shape(receptive_field_size, pointnet_spacing, 1))
# Necessary to allow tf to place ops on CPU when no GPU implementation exists
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
tf_config.allow_soft_placement = True
# Create a session
sess = tf.Session(config=tf_config)
with sess.as_default():
with tf.device('/' + device + ':0'):
is_training_pl = tf.placeholder(tf.bool, shape=(), name='is_training_pl')
points_xyz_pl = tf.placeholder(tf.float32, shape=(1, num_input_points+num_pointnets, 3), name='points_xyz_pl')
points_features_pl = tf.placeholder(tf.float32, shape=(1, num_input_points+num_pointnets, 1), name='points_features_pl')
placeholders = {'is_training_pl': is_training_pl, 'points_xyz_pl': points_xyz_pl, 'points_features_pl': points_features_pl}
pred_op = model.build_model(1, receptive_field_size, points_xyz_pl, points_features_pl, is_training_pl, num_learnable_classes)
tf.train.Saver().restore(sess, checkpoint_path)
model.print_num_parameters()
pointnet_locations = model.get_pointnet_locations()
point_features = np.ones(num_input_points)
pointnet_features = np.zeros(pointnet_locations.shape[0])
constant_features = np.expand_dims(np.expand_dims(np.concatenate([point_features, pointnet_features]), axis=1), axis=0)
return sess, placeholders, pred_op, pointnet_locations, constant_features
def get_validation_set_item_ids(dataset_metadata_path):
""" Loads the items from the dataset belonging to the validation set.
Args:
dataset_metadata_path: string
Returns: list[string]
"""
with open(os.path.join(dataset_metadata_path, 'validation_split.txt')) as f:
return [x.strip() for x in f.readlines() if x.strip() != '']
def get_latest_checkpoint_path(session_dir):
""" Returns the path of the most recent checkpoint in session_dir.
Args:
session_dir: string
Returns: string
"""
checkpoints = glob.glob(session_dir+'model.ckpt-*.meta')
if not checkpoints:
return ''
checkpoints.sort(key=lambda f: int(filter(str.isdigit, f)))
return checkpoints[-1][:-5]
def run_model(sess, placeholders, pred_op, points, pointnet_locations, constant_features):
""" Passes points through the model.
Args:
sess: tf.session
placeholders: dict
pred_op: tf.tensor
points: np.array
pointnet_locations: np.array
constant_features: np.array
Returns: np.array
"""
points_and_pointnet_locations = np.expand_dims(np.concatenate([points, pointnet_locations], axis=0), axis=0)
start_time = time.time()
predictions = sess.run(pred_op, feed_dict={
placeholders['is_training_pl']: False,
placeholders['points_xyz_pl']: points_and_pointnet_locations,
placeholders['points_features_pl']: constant_features
})
end_time = time.time()
print 'Prediction took: %ds' % (end_time - start_time)
return predictions
def predict(config_path, input_path, device, colors_path):
""" Predicts semantics of an unseen input to a trained model.
Args:
config_path: string
input_path: string
device: string
colors_path: string
"""
config = util.load_config(config_path)
print 'Loaded configuration from: %s' % config_path
session_dir = config_path[:config_path.rfind('/')+1]
checkpoint_path = get_latest_checkpoint_path(session_dir)
if not checkpoint_path:
print 'Error: No checkpoint found in same directory as configuration file.'
return
predict_path = os.path.join(session_dir, 'predict')
if not os.path.exists(predict_path): os.mkdir(predict_path)
model = fcpn.FCPN(config)
points, _, faces = util.read_ply(input_path)
points_min, points_max, points_size = util.get_point_cloud_min_max_size(points)
print 'Size: %f, %f, %f, # Points: %d' % (points_size[0], points_size[1], points_size[2], points.shape[0])
receptive_field_size = np.ceil(points_size / model.get_max_centroid_spacing()) * model.get_max_centroid_spacing()
print 'Model Receptive Field Size: %f, %f, %f' % (receptive_field_size[0], receptive_field_size[1], receptive_field_size[2])
sess, placeholders, pred_op, pointnet_locations, constant_features = setup_model(model, receptive_field_size, points.shape[0], config['model']['pointnet']['spacing'], config['dataset']['num_learnable_classes'], checkpoint_path, device)
if not colors_path: colors_path = 'util/colors.txt'
with open(colors_path) as f:
colors = np.array([[int(c) for c in line.strip().split(' ')] for line in f.readlines()])
# Translate input point cloud to be centered at origin
translate_to_origin = np.tile(points_min, (points.shape[0], 1))
translate_to_padded_origin = np.tile(np.array([0, 0, 0]), (points.shape[0], 1))
points -= translate_to_origin
points += translate_to_padded_origin
predictions = run_model(sess, placeholders, pred_op, points, pointnet_locations, constant_features)
predictions = predictions[0,:,:config['dataset']['empty_class_id']+1]
predictions = np.argmax(predictions, axis=1)
predictions = np.reshape(predictions, np.round(receptive_field_size / model.get_output_voxel_spacing()).astype(np.int32))
predicted_labels = voxelgrid_predictions_to_point_cloud(predictions, model.get_output_voxel_spacing(), points, config['dataset']['empty_class_id'])
points += translate_to_origin
points -= translate_to_padded_origin
predicted_filepath = os.path.join(predict_path, input_path[input_path.rfind('/')+1:-4] + '.predicted.ply')
util.write_ply(predicted_filepath, points, faces, predicted_labels, colormap=colors)
def evaluate(config_path, device):
""" Evaluates a trained model associated with the configuration file at config_path.
Args:
config_path: string
device: string
"""
config = util.load_config(config_path)
print 'Loaded configuration from: %s' % config_path
session_dir = config_path[:config_path.rfind('/')+1]
model = fcpn.FCPN(config)
dataset = data.Dataset(config)
sample_ids = get_validation_set_item_ids(dataset.get_dataset_metadata_path())
points_list = []
faces_list = []
labels_list = []
max_size = np.array([0,0,0])
max_points_count = 0
print 'Loading test set.'
for sample_id in sample_ids:
ply_path = os.path.join(dataset.get_dataset_data_path(), sample_id, sample_id + config['dataset']["original_file_suffix"])
points, labels, faces = util.read_ply(ply_path)
points_list.append(points)
labels_list.append(labels)
faces_list.append(faces)
points_min, points_max, points_size = util.get_point_cloud_min_max_size(points)
max_size = np.maximum(max_size, points_size)
max_points_count = np.maximum(max_points_count, points.shape[0])
print 'Max Input Size: %f, %f, %f' % (max_size[0], max_size[1], max_size[2])
print 'Max Input Points: %d' % max_points_count
receptive_field_size = np.ceil(max_size / model.get_max_centroid_spacing()) * model.get_max_centroid_spacing()
print 'Model Receptive Field Size: %f, %f, %f' % (receptive_field_size[0], receptive_field_size[1], receptive_field_size[2])
checkpoint_path = get_latest_checkpoint_path(session_dir)
if not checkpoint_path:
print 'Error: No checkpoint found in same directory as configuration file.'
return
evaluation_path = os.path.join(session_dir, 'evaluation')
if not os.path.exists(evaluation_path): os.mkdir(evaluation_path)
sess, placeholders, pred_op, pointnet_locations, constant_features = setup_model(model, receptive_field_size, max_points_count, config['model']['pointnet']['spacing'], config['dataset']['num_learnable_classes'], checkpoint_path, device)
confusion_matrix = np.zeros((dataset.get_num_learnable_classes(), dataset.get_num_learnable_classes()), dtype=int) # rows = actual, columns = predicted
for input_i, sample_id in enumerate(sample_ids):
print sample_id
points = points_list[input_i]
labels = labels_list[input_i]
faces = faces_list[input_i]
labels_remapped = dataset.map_all_to_learnable_classes(labels)
points_min, points_max, points_size = util.get_point_cloud_min_max_size(points)
# Translate input point cloud to be centered at origin
translate_to_origin = np.tile(points_min, (points.shape[0], 1))
translate_to_padded_origin = np.tile(np.array([0, 0, 0]), (points.shape[0], 1))
points -= translate_to_origin
points += translate_to_padded_origin
resampled_points = util.random_sample(points, max_points_count)
predictions = run_model(sess, placeholders, pred_op, resampled_points, pointnet_locations, constant_features)
predictions = predictions[0,:,:config['dataset']['empty_class_id']+1]
predictions = np.argmax(predictions, axis=1)
predictions = np.reshape(predictions, np.round(receptive_field_size / model.get_output_voxel_spacing()).astype(np.int32))
predicted_labels = voxelgrid_predictions_to_point_cloud(predictions, model.get_output_voxel_spacing(), points, dataset.get_empty_class())
points += translate_to_origin
points -= translate_to_padded_origin
for point_i in range(points.shape[0]):
confusion_matrix[labels_remapped[point_i], predicted_labels[point_i]] += 1
predicted_filepath = os.path.join(evaluation_path, sample_id + '.predicted.ply')
util.write_ply(predicted_filepath, points, faces, predicted_labels, colormap=dataset.get_colors())
ious_log_string = '\nClass IoUs: \n'
ious = []
confusion_matrix = confusion_matrix[:dataset.get_empty_class(),:dataset.get_empty_class()]
labels_strings = dataset.get_learnable_classes_strings()
for class_i in range(confusion_matrix.shape[0]):
TP = confusion_matrix[class_i, class_i]
FP = np.sum(confusion_matrix[:, class_i]) - TP
FN = np.sum(confusion_matrix[class_i, :]) - TP
IoU = TP / (TP + FP + FN) if (TP + FP + FN) > 0 else 0
ious.append(IoU)
ious_log_string += labels_strings[class_i] + ': %.3f\n' % IoU
avg_iou = np.mean(ious)
ious_log_string += 'Average IoU: %.3f\n' % avg_iou
print ious_log_string
with open(os.path.join(evaluation_path, "statistics.txt"), "w") as ious_file:
ious_file.write(ious_log_string)