1
1
# ai
2
2
3
- _ Artificial Intelligence (AI) - Contains Code for Several YouTube Series. _
3
+ From-scratch impls of AI models, approaches, tricks, and more!
4
4
5
5
## Contents
6
6
@@ -49,6 +49,16 @@ _Artificial Intelligence (AI) - Contains Code for Several YouTube Series._
49
49
- [ :chart_with_upwards_trend : Plot] [ tanh_plot ]
50
50
- [ :tv : YouTube Video: Discussing and Implementing Tanh and Its Derivative Using PyTorch] [ tanh_youtube ]
51
51
52
+ ### Deep Learning
53
+
54
+ - Deep Learning Project Setup (+ CNN for MNIST)
55
+ - [ :orange_book : The Reproducible MNIST] [ the_reproducible_mnist ]
56
+ - [ :rocket : MNIST CNN Model] [ mnist_cnn ]
57
+ - [ :tv : YouTube Video: Deep Learning Project Setup (+ CNN for MNIST)] [ deep_learning_setup_youtube ]
58
+ - VGG Models for Image Classification
59
+ - [ :rocket : VGG Model] [ vgg ]
60
+ - [ :tv : YouTube Video: VGG Models for Image Classification] [ vgg_youtube ]
61
+
52
62
### Functions
53
63
54
64
- Distance Functions
@@ -67,30 +77,23 @@ _Artificial Intelligence (AI) - Contains Code for Several YouTube Series._
67
77
- [ :chart_with_upwards_trend : Convex and Non-Convex Functions] [ gradient_descent_plot ]
68
78
- [ :tv : YouTube Video: Discussing Batch, Stochastic, and Mini-Batch Gradient Descent] [ gradient_descent_youtube ]
69
79
70
- ### Deep Learning
71
-
72
- - Deep Learning Project Setup (+ CNN for MNIST)
73
- - [ :orange_book : The Reproducible MNIST] [ the_reproducible_mnist ]
74
- - [ :rocket : MNIST CNN Model] [ mnist_cnn ]
75
- - [ :tv : YouTube Video: Deep Learning Project Setup (+ CNN for MNIST)] [ deep_learning_setup ]
76
-
77
80
### Machine Learning Models from Scratch Using NumPy
78
81
79
82
- Gaussian Naive Bayes
80
83
- [ :rocket : Implementation] [ gaussian_naive_bayes ]
81
84
- [ :orange_book : Theory] [ gaussian_naive_bayes_theory ]
82
85
- [ :tv : YouTube Video: Implementing Gaussian Naive Bayes from Scratch] [ gaussian_naive_bayes_youtube ]
83
- - [ :tv : YouTube Video: AI/ML Model API Design and Numerical Stability (follow-up)] [ api_design_and_numerical_stability ]
86
+ - [ :tv : YouTube Video: AI/ML Model API Design and Numerical Stability (follow-up)] [ api_design_and_numerical_stability_youtube ]
84
87
- K-Nearest Neighbors (k-NN)
85
88
- [ :rocket : Implementation] [ k_nearest_neighbors ]
86
89
- [ :orange_book : Theory] [ k_nearest_neighbors_theory ]
87
90
- [ :tv : YouTube Video: Implementing K-Nearest Neighbors from Scratch] [ k_nearest_neighbors_youtube ]
88
- - [ :tv : YouTube Video: AI/ML Model API Design and Numerical Stability (follow-up)] [ api_design_and_numerical_stability ]
91
+ - [ :tv : YouTube Video: AI/ML Model API Design and Numerical Stability (follow-up)] [ api_design_and_numerical_stability_youtube ]
89
92
- Linear Regression
90
93
- [ :rocket : Implementation] [ linear_regression ]
91
94
- [ :orange_book : Theory] [ linear_regression_theory ]
92
95
- [ :tv : YouTube Video: Implementing Linear Regression from Scratch] [ linear_regression_youtube ]
93
- - [ :tv : YouTube Video: AI/ML Model API Design and Numerical Stability (follow-up)] [ api_design_and_numerical_stability ]
96
+ - [ :tv : YouTube Video: AI/ML Model API Design and Numerical Stability (follow-up)] [ api_design_and_numerical_stability_youtube ]
94
97
- Logistic Regression
95
98
- [ :rocket : Implementation] [ logistic_regression ]
96
99
- [ :orange_book : Theory] [ logistic_regression_theory ]
@@ -106,62 +109,64 @@ _Artificial Intelligence (AI) - Contains Code for Several YouTube Series._
106
109
[ MIT License] [ license ]
107
110
108
111
[ license ] : LICENSE
109
- [ sigmoid ] : activations /sigmoid.py
112
+ [ sigmoid ] : activation /sigmoid.py
110
113
[ sigmoid_theory ] : https://en.wikipedia.org/wiki/Sigmoid_function
111
- [ sigmoid_plot ] : activations /plots/sigmoid.png
114
+ [ sigmoid_plot ] : activation /plots/sigmoid.png
112
115
[ sigmoid_youtube ] : https://www.youtube.com/watch?v=oxC3T_-_Amw
113
- [ relu ] : activations /relu.py
116
+ [ relu ] : activation /relu.py
114
117
[ relu_theory ] : https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
115
- [ relu_plot ] : activations /plots/relu.png
118
+ [ relu_plot ] : activation /plots/relu.png
116
119
[ relu_youtube ] : https://www.youtube.com/watch?v=93qjwrP7PfE
117
- [ leaky_relu ] : activations /leaky_relu.py
120
+ [ leaky_relu ] : activation /leaky_relu.py
118
121
[ leaky_relu_theory ] : https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLU
119
- [ leaky_relu_plot ] : activations /plots/leaky_relu.png
122
+ [ leaky_relu_plot ] : activation /plots/leaky_relu.png
120
123
[ leaky_relu_youtube ] : https://www.youtube.com/watch?v=1HLKeWG0qnE
121
- [ gelu ] : activations /gelu.py
124
+ [ gelu ] : activation /gelu.py
122
125
[ gelu_theory ] : https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Gaussian-error_linear_unit_(GELU)
123
- [ gelu_plot ] : activations /plots/gelu.png
126
+ [ gelu_plot ] : activation /plots/gelu.png
124
127
[ gelu_youtube ] : https://www.youtube.com/watch?v=1HLKeWG0qnE
125
- [ swish ] : activations /swish.py
128
+ [ swish ] : activation /swish.py
126
129
[ swish_theory ] : https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#SiLU
127
- [ swish_plot ] : activations /plots/swish.png
130
+ [ swish_plot ] : activation /plots/swish.png
128
131
[ swish_youtube ] : https://www.youtube.com/watch?v=1HLKeWG0qnE
129
- [ serf ] : activations /serf.py
132
+ [ serf ] : activation /serf.py
130
133
[ serf_theory ] : https://arxiv.org/abs/2108.09598
131
- [ serf_plot ] : activations /plots/serf.png
134
+ [ serf_plot ] : activation /plots/serf.png
132
135
[ serf_youtube ] : https://www.youtube.com/watch?v=CLjmEuCxuT4
133
136
[ serf_reddit ] : https://www.reddit.com/r/MachineLearning/comments/uhgupq/r_d_serf_activation_function_improving_swish/
134
- [ tanh ] : activations /tanh.py
137
+ [ tanh ] : activation /tanh.py
135
138
[ tanh_theory ] : https://en.wikipedia.org/wiki/Hyperbolic_functions#Exponential_definitions
136
- [ tanh_plot ] : activations /plots/tanh.png
139
+ [ tanh_plot ] : activation /plots/tanh.png
137
140
[ tanh_youtube ] : https://www.youtube.com/watch?v=MSi1tobj-jg
138
- [ distance_functions ] : functions /distance.py
141
+ [ distance_functions ] : function /distance.py
139
142
[ distance_functions_theory ] : https://en.wikipedia.org/wiki/Similarity_measure
140
143
[ distance_functions_youtube ] : https://www.youtube.com/watch?v=50G47n42-9o
141
- [ convolution ] : functions /convolution.py
144
+ [ convolution ] : function /convolution.py
142
145
[ convolution_theory ] : https://en.wikipedia.org/wiki/Convolution
143
146
[ convolution_youtube ] : https://www.youtube.com/watch?v=pmyulQwV62k
144
147
[ gradient_descent_theory ] : theory/gradient_descent/gradient_descent.pdf
145
148
[ gradient_descent_plot ] : theory/gradient_descent/convex_and_non_convex_plot.png
146
149
[ gradient_descent_youtube ] : https://www.youtube.com/watch?v=mV247Fe1DJc
147
- [ gaussian_naive_bayes ] : models /gaussian_naive_bayes.py
150
+ [ gaussian_naive_bayes ] : model/ml /gaussian_naive_bayes.py
148
151
[ gaussian_naive_bayes_theory ] : https://en.wikipedia.org/wiki/Naive_Bayes_classifier#Gaussian_naive_Bayes
149
152
[ gaussian_naive_bayes_youtube ] : https://www.youtube.com/watch?v=maJIRFeQBVI
150
- [ k_nearest_neighbors ] : models /k_nearest_neighbors.py
153
+ [ k_nearest_neighbors ] : model/ml /k_nearest_neighbors.py
151
154
[ k_nearest_neighbors_theory ] : https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
152
155
[ k_nearest_neighbors_youtube ] : https://www.youtube.com/watch?v=8SFTAcZb9i4
153
- [ linear_regression ] : models /linear_regression.py
156
+ [ linear_regression ] : model/ml /linear_regression.py
154
157
[ linear_regression_theory ] : https://en.wikipedia.org/wiki/Linear_regression
155
158
[ linear_regression_youtube ] : https://www.youtube.com/watch?v=7FdQZ9r41LU
156
- [ logistic_regression ] : models /logistic_regression.py
159
+ [ logistic_regression ] : model/ml /logistic_regression.py
157
160
[ logistic_regression_theory ] : https://en.wikipedia.org/wiki/Logistic_regression
158
161
[ logistic_regression_computing_gradients ] : theory/gradients/logistic_regression/logistic_regression.pdf
159
162
[ logistic_regression_youtube ] : https://www.youtube.com/watch?v=YDa3rX9yLCE
160
- [ k_means_clustering ] : models /k_means_clustering.py
163
+ [ k_means_clustering ] : model/ml /k_means_clustering.py
161
164
[ k_means_clustering_theory ] : https://en.wikipedia.org/wiki/K-means_clustering
162
165
[ k_means_clustering_youtube ] : https://www.youtube.com/watch?v=NfPGFSUM-nI
163
166
[ implement ] : https://www.youtube.com/watch?v=maJIRFeQBVI&list=PLG8XxYPkVOUvVzz1ZKcGAJpIBK7GRrFYR
164
- [ api_design_and_numerical_stability ] : https://www.youtube.com/watch?v=BOoTX0hkO6k
165
- [ the_reproducible_mnist ] : https://github.com/oniani/mnist
166
- [ mnist_cnn ] : models/mnist_cnn.py
167
- [ deep_learning_setup ] : https://www.youtube.com/watch?v=2JkJZQP9dHg
167
+ [ api_design_and_numerical_stability_youtube ] : https://www.youtube.com/watch?v=BOoTX0hkO6k
168
+ [ the_reproducible_mnist ] : https://github.com/davidoniani/mnist
169
+ [ mnist_cnn ] : model/dl/mnist_cnn.py
170
+ [ deep_learning_setup_youtube ] : https://www.youtube.com/watch?v=2JkJZQP9dHg
171
+ [ vgg ] : model/dl/vgg.py
172
+ [ vgg_youtube ] : https://www.youtube.com/watch?v=0Ak4i2j_diM
0 commit comments