-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSIR_Spreadfunction.py
131 lines (90 loc) · 3.46 KB
/
SIR_Spreadfunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Check function SIR new approach
Last check 09/03/22, 12h16
@author: thl902
"""
import numpy as np
import math
def SIR_Spreadfunction(theta, timesteps, risk_matrix, initial_status):
""""
Args:
theta: parameter
timesteps: number time steps
risk_matrix: the transmission matrix
initial_status: the initial status, number S,I,R
Outputs: Status matrix with 3 columns are number of S,I,R each timestep
"""
tmp_matrix = np.zeros((timesteps,3)) #number S,I, and R each step
initial_status1 = list(np.array(initial_status)) # assign another id
risk_matrix1= np.array(risk_matrix)
N = sum(initial_status)
tmp_matrix[0,:] = initial_status1
#update second row of the matrix
x = tmp_matrix[0,:]
total_infected = x[1]+x[2]
transmission_rate = theta[0]*x[1]/total_infected*sum(risk_matrix1[int(total_infected-1),0:N])
y1 = np.random.poisson(transmission_rate, 1) #new infected, poisson(transmission_rate)
y2 = np.random.binomial(x[1], theta[1], 1)
#Update S,I,R status
## S
if y1 <= x[0]:
tmp0 = x[0] - y1
else:
y1 = x[0]
tmp0 = 0
tmp1 = x[1] + y1 - y2
tmp2 = N - tmp0 - tmp1
tmp_matrix[1,0] = tmp0
tmp_matrix[1,1] = tmp1
tmp_matrix[1,2] = tmp2
for i in range(2,timesteps):
x1 = tmp_matrix[(i-2),:]
x2 = tmp_matrix[(i-1),:]
new_recovered = x2[2] - x1[2]
total_infect1 = x1[1]+x1[2]
total_infect2 = x2[1]+x2[2]
total_rate1 = (x1[1]-new_recovered)/total_infect1*sum(risk_matrix1[int(total_infect2-1),0:int(total_infect1)])
total_rate2 = sum(risk_matrix1[int(total_infect2-1),int(total_infect1):int(total_infect2)])
transmission_rate = theta[0]*( total_rate1 + total_rate2 )
if min((N - total_infect2), transmission_rate)>0:
y1 = np.random.poisson(transmission_rate, 1) #new infected, poisson(transmission_rate)
else:
y1 = 0
y2 = np.random.binomial(x2[1], theta[1], 1)
#Update S,I,R status
## S
if y1 <= x2[0]:
tmp0 = x2[0] - y1
else:
y1 = x2[0]
tmp0 = 0
## I
tmp1 = x2[1] + y1 - y2 #as y2 always less than x[1]
tmp2 = N - tmp0 - tmp1
tmp_matrix[i,0] = tmp0
tmp_matrix[i,1] = tmp1
tmp_matrix[i,2] = tmp2
return(tmp_matrix)
#####Example usage
# import os
# os.chdir("C:\\Users\\lemin\\Desktop\\HIV\\1.Manuscript_ClassicalvsNetwork\\SIR_Approximate\\")
# import networkx as nx
# import matplotlib.pyplot as plt
# from Avetransmissionmatrix_function import Avetransmissionmatrix_function
# N = 100
# theta = [1.1,0.1]
# G = nx.Graph()
# p=.5
# G= nx.erdos_renyi_graph(N,p)
# ##Add edges 0,1,2,..,N-1 to make one component
# for i in range(0,N-1):
# G.add_edge(i,i+1)
# nx.draw(G,with_labels=True)
# plt.show()
# Ini1 = 0
# Nrep = 100
# risk_matrix = Avetransmissionmatrix_function(G, Ini1, Nrep)
# timesteps = 100
# initial_status = [N-1,1,0]
# SIR_Spreadfunction(theta, timesteps, risk_matrix, initial_status)