Skip to content

Latest commit

 

History

History
211 lines (205 loc) · 16.1 KB

operators.md

File metadata and controls

211 lines (205 loc) · 16.1 KB

Supported ONNX Operators

TensorRT 10.0 supports operators in the inclusive range of opset 9 to opset 20. Latest information of ONNX operators can be found here. More details and limitations are documented in the chart below.

TensorRT supports the following ONNX data types: DOUBLE, FLOAT32, FLOAT16, BFLOAT16, INT32, INT64, FP8, INT8, INT4, UINT8, and BOOL

Note: There is limited support for DOUBLE type. TensorRT will attempt to cast DOUBLE down to FLOAT, clamping values to +-FLT_MAX if necessary. Note: INT8, INT4, and FP8 are treated as Quantized Types in TensorRT, where support is available only through quantization from a floating-point type with higher precision. Note: UINT8 is only supported as network input or output tensor types.

Operator Support Matrix

Operator Supported Supported Types Restrictions
Abs Y FP32, FP16, BF16, INT32, INT64
Acos Y FP32, FP16, BF16
Acosh Y FP32, FP16, BF16
Add Y FP32, FP16, BF16, INT32, INT64
AffineGrid N
And Y BOOL
ArgMax Y FP32, FP16, BF16, INT32, INT64
ArgMin Y FP32, FP16, BF16, INT32, INT64
Asin Y FP32, FP16, BF16
Asinh Y FP32, FP16, BF16
Atan Y FP32, FP16, BF16
Atanh Y FP32, FP16, BF16
AveragePool Y FP32, FP16, BF16 2D or 3D Pooling only. dilations must be empty or all ones
BatchNormalization Y FP32, FP16, BF16
Bernoulli N
BitShift N
BitwiseAnd N
BitwiseNot N
BitwiseOr N
BitwiseXor N
BlackmanWindow N
Cast Y FP32, FP16, BF16, INT32, INT64, , UINT8, BOOL
CastLike Y FP32, FP16, BF16, INT32, INT64, , UINT8, BOOL
Ceil Y FP32, FP16, BF16
Col2Im N
Celu Y FP32, FP16, BF16
CenterCropPad N
Clip Y FP32, FP16, BF16
Compress N
Concat Y FP32, FP16, BF16, INT32, INT64, BOOL
ConcatFromSequence N
Constant Y FP32, FP16, BF16, INT32, INT64, BOOL
ConstantOfShape Y FP32
Conv Y FP32, FP16, BF16
ConvInteger N
ConvTranspose Y FP32, FP16, BF16
Cos Y FP32, FP16, BF16
Cosh Y FP32, FP16, BF16
CumSum Y FP32, FP16, BF16 axis must be an initializer
DFT N
DepthToSpace Y FP32, FP16, BF16, INT32, INT64
DequantizeLinear Y INT8, FP8, INT4 x_zero_point must be zero
Det N
Div Y FP32, FP16, BF16, INT32, INT64
Dropout Y FP32, FP16, BF16
DynamicQuantizeLinear N
Einsum Y FP32, FP16, BF16
Elu Y FP32, FP16, BF16
Equal Y FP32, FP16, BF16, INT32, INT64
Erf Y FP32, FP16, BF16
Exp Y FP32, FP16, BF16
Expand Y FP32, FP16, BF16, INT32, INT64, BOOL
EyeLike Y FP32, FP16, BF16, INT32, INT64, BOOL
Flatten Y FP32, FP16, BF16, INT32, INT64, BOOL
Floor Y FP32, FP16, BF16
Gather Y FP32, FP16, BF16, INT32, INT64, BOOL
GatherElements Y FP32, FP16, BF16, INT32, INT64, BOOL
GatherND Y FP32, FP16, BF16, INT32, INT64, BOOL
Gelu Y FP32, FP16, BF16, INT8, INT32, INT64
Gemm Y FP32, FP16, BF16
GlobalAveragePool Y FP32, FP16, BF16
GlobalLpPool Y FP32, FP16, BF16
GlobalMaxPool Y FP32, FP16, BF16
Greater Y FP32, FP16, BF16, INT32, INT64
GreaterOrEqual Y FP32, FP16, BF16, INT32, INT64
GridSample Y FP32, FP16
GroupNormalization Y FP32, FP16, BF16
GRU Y FP32, FP16, BF16 For bidirectional GRUs, activation functions must be the same for both the forward and reverse pass
HammingWindow N
HannWindow N
HardSigmoid Y FP32, FP16, BF16
HardSwish Y FP32, FP16, BF16
Hardmax Y FP32, FP16, BF16 axis dimension of input must be a build-time constant
Identity Y FP32, FP16, BF16, INT32, INT64, BOOL
If Y FP32, FP16, BF16, INT32, INT64, BOOL Output tensors of the two conditional branches must have broadcastable shapes, and must have different names
ImageScaler Y FP32, FP16, BF16
ImageDecoder N
InstanceNormalization Y FP32, FP16, BF16
IsInf Y FP32, FP16, BF16
IsNaN Y FP32, FP16, BF16, INT32, INT64
LayerNormalization Y FP32, FP16, BF16
LeakyRelu Y FP32, FP16, BF16
Less Y FP32, FP16, BF16, INT32, INT64
LessOrEqual Y FP32, FP16, BF16, INT32, INT64
Log Y FP32, FP16, BF16
LogSoftmax Y FP32, FP16, BF16
Loop Y FP32, FP16, BF16, INT32, INT64, BOOL
LRN Y FP32, FP16, BF16
LSTM Y FP32, FP16, BF16 For bidirectional LSTMs, activation functions must be the same for both the forward and reverse pass
LpNormalization Y FP32, FP16, BF16
LpPool Y FP32, FP16, BF16 dilations must be empty or all ones
MatMul Y FP32, FP16, BF16
MatMulInteger N
Max Y FP32, FP16, BF16, INT32, INT64
MaxPool Y FP32, FP16, BF16 2D or 3D pooling only. Indices output tensor unsupported. dilations must be empty or all ones
MaxRoiPool N
MaxUnpool N
Mean Y FP32, FP16, BF16, FP8, INT32, INT64
MeanVarianceNormalization Y FP32, FP16, BF16
MelWeightMatrix N
Min Y FP32, FP16, BF16, INT32, INT64
Mish Y FP32, FP16
Mod Y FP32, FP16, BF16, INT32, INT64
Mul Y FP32, FP16, BF16, INT32, INT64
Multinomial N
Neg Y FP32, FP16, BF16, INT32, INT64
NegativeLogLikelihoodLoss N
NonMaxSuppression Y FP32, FP16
NonZero Y FP32, FP16
Not Y BOOL
OneHot Y FP32, FP16, BF16, INT32, INT64, BOOL depth must be a build-time constant
Optional N
OptionalGetElement N
OptionalHasElement N
Or Y BOOL
Pad Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ParametricSoftplus Y FP32, FP16, BF16
Pow Y FP32, FP16, BF16
PRelu Y FP32, FP16, BF16
QLinearConv N
QLinearMatMul N
QuantizeLinear Y FP32, FP16, BF16 y_zero_point must be 0
RandomNormal Y FP32, FP16, BF16 seed value is ignored by TensorRT
RandomNormalLike Y FP32, FP16, BF16 seed value is ignored by TensorRT
RandomUniform Y FP32, FP16, BF16 seed value is ignored by TensorRT
RandomUniformLike Y FP32, FP16, BF16 seed value is ignored by TensorRT
Range Y FP32, FP16, BF16, INT32, INT64
Reciprocal Y FP32, FP16, BF16
ReduceL1 Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceL2 Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceLogSum Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceLogSumExp Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceMax Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceMean Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceMin Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceProd Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceSum Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
ReduceSumSquare Y FP32, FP16, BF16, INT32, INT64 axes must be an initializer
RegexFullMatch N
Relu Y FP32, FP16, BF16, INT32, INT64
Reshape Y FP32, FP16, BF16, INT32, INT64, BOOL
Resize Y FP32, FP16, BF16 Supported resize transformation modes: half_pixel, pytorch_half_pixel, tf_half_pixel_for_nn, asymmetric, and align_corners.
Supported resize modes: nearest, linear.
Supported nearest modes: floor, ceil, round_prefer_floor, round_prefer_ceil.
Supported aspect ratio policy: stretch.
When scales is a tensor input, axes must be an iota vector of length rank(input).
Antialiasing is not supported.
ReverseSequence Y FP32, FP16, BF16, INT32, INT64, BOOL
RNN Y FP32, FP16, BF16 For bidirectional RNNs, activation functions must be the same for both the forward and reverse pass
RoiAlign Y FP32, FP16
Round Y FP32, FP16, BF16
STFT N
ScaledTanh Y FP32, FP16, BF16
Scan Y FP32, FP16, BF16
Scatter Y FP32, FP16, BF16, INT32, INT64
ScatterElements Y FP32, FP16, BF16, INT32, INT64
ScatterND Y FP32, FP16, BF16, INT32, INT64 reduction is not supported
Selu Y FP32, FP16, BF16,
SequenceAt N
SequenceConstruct N
SequenceEmpty N
SequenceErase N
SequenceInsert N
SequenceLength N
SequenceMap N
Shape Y FP32, FP16, BF16, INT32, INT64, BOOL
Shrink Y FP32, FP16, BF16, INT32, INT64
Sigmoid Y FP32, FP16, BF16
Sign Y FP32, FP16, BF16, INT32, INT64
Sin Y FP32, FP16, BF16
Sinh Y FP32, FP16, BF16
Size Y FP32, FP16, BF16, INT32, INT64, BOOL
Slice Y FP32, FP16, BF16, INT32, INT64, BOOL axes must be an initializer
Softmax Y FP32, FP16, BF16
SoftmaxCrossEntropyLoss N
Softplus Y FP32, FP16, BF16
Softsign Y FP32, FP16, BF16
SpaceToDepth Y FP32, FP16, BF16, INT32, INT64
Split Y FP32, FP16, BF16, INT32, INT64 BOOL
SplitToSequence N
Sqrt Y FP32, FP16, BF16
Squeeze Y FP32, FP16, BF16, INT32, INT64, BOOL axes must be an initializer
StringConcat N
StringNormalizer N
StringSplit N
Sub Y FP32, FP16, BF16, INT32, INT64
Sum Y FP32, FP16, BF16, INT32, INT64
Tan Y FP32, FP16, BF16
Tanh Y FP32, FP16, BF16
TfIdfVectorizer N
ThresholdedRelu Y FP32, FP16, BF16
Tile Y FP32, FP16, BF16, INT32, INT64, BOOL
TopK Y FP32, FP16, BF16, INT32, INT64
Transpose Y FP32, FP16, BF16, INT32, INT64, BOOL
Trilu Y FP32, FP16, BF16, INT32, INT64, BOOL
Unique N
Unsqueeze Y FP32, FP16, BF16, INT32, INT64, BOOL axes must be a constant tensor
Upsample Y FP32, FP16, BF16
Where Y FP32, FP16, BF16, INT32, INT64, BOOL
Xor Y BOOL