-
Notifications
You must be signed in to change notification settings - Fork 0
/
EMS_2020-10-01.sql
63 lines (53 loc) · 166 KB
/
EMS_2020-10-01.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
DROP TABLE IF EXISTS question_bank;--end
CREATE TABLE `question_bank` (
`question_id` int(11) NOT NULL,
`question` text NOT NULL,
`option_A` text NOT NULL,
`option_B` text NOT NULL,
`option_C` text NOT NULL,
`option_D` text NOT NULL,
`correct_option` varchar(255) NOT NULL,
`awarded_mark` int(10) NOT NULL,
PRIMARY KEY (`question_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;--end
INSERT INTO question_bank VALUES
('1','<p><img src=\"\" style=\"height:100px; width:402px\" /></p>\n\n<p>Find x and y respectively in the subtraction above carried out in base 5</p>\n','A. 2, 4','B. 3, 2','C. 4, 2',' D. 4, 3','C','2'),
('2','<p>Find p, if 451<sub>6</sub> – p<sub>7</sub> = 305<sub>6</sub></p>\n','A. 611<sub>7</sub> ','B. 142<sub>7</sub>\n','C. 116<sub>7</sub>',' D. 62<sub>7</sub>','C','2'),
('3','<p><img src=\"\" style=\"height:83px; width:205px\" /></p>\n','A 2/25 ','B. 19/60','C. 7/12 ','D. 19/35','D','2'),
('4','<p>A farmer planted 5000 grains of maize and harvested 5000 cobs, each bearing 500 grains.What is the ratio of the number of grains sowed to the number harvested?</p>\n','A. 1:500 ','B. 1:5000','C. 1:25000',' D. 1:250000','D','2'),
('5','<p>Three teachers shared a packet of chalk. The first teacher got <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE1Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MjwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjU8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /> of the chalk and the second teacher received <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE1Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MjwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1uPjE1PC9tbj4KICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgIDwvbWZyYWM+CjwvbWF0aD4=\" src=\"\" /> of the remainder.What fraction did the third teacher receive?</p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1uPjE8L21uPgogICAgICAgICAgICA8bW4+MTwvbW4+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgIDxtbj4yNTwvbW4+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgIDwvbWZyYWM+CjwvbWF0aD4=\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bW4+MTwvbW4+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICAgICAgPG1uPjI8L21uPgogICAgICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bW4+MjU8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICA8L21mcmFjPgo8L21hdGg+\" src=\"\" /></p>','<p>C. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bW4+MTwvbW4+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8bW4+MzwvbW4+CiAgICAgICAgICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjI1PC9tbj4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /></p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8bW4+ODwvbW4+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjE1PC9tbj4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /></p>','C','2'),
('6','<p><img src=\"\" /></p>\n','A. 2',' B. 3','C. 4',' D. 6','B','2'),
('7','<p><img alt=\"\" src=\"\" style=\"height:183px; width:289px\" /></p>\n\n<p>The shaded region in the venn diagram above</p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtc3VwPgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bWk+UDwvbWk+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bW8+JiN4MjI4Mjs8L21vPgogICAgICAgIDwvbXJvdz4KICAgIDwvbXN1cD4KICAgIDxtdGV4dD4mI3gyMjI5OzwvbXRleHQ+CiAgICA8bXRleHQ+KFFSKTwvbXRleHQ+CjwvbWF0aD4=\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtdGV4dD5QPC9tdGV4dD4KICAgIDxtdGV4dD4mI3gyMjI5OzwvbXRleHQ+CiAgICA8bXJvdz4KICAgICAgICA8bW8gbWF4c2l6ZT0iMSI+KDwvbW8+CiAgICAgICAgPG1pPlE8L21pPgogICAgICAgIDxtbyBtYXhzaXplPSIxIj4pPC9tbz4KICAgIDwvbXJvdz4KPC9tYXRoPg==\" src=\"\" /></p>','<p>C. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtc3VwPgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bWk+UDwvbWk+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bW8+JiN4MjI4Mjs8L21vPgogICAgICAgIDwvbXJvdz4KICAgIDwvbXN1cD4KICAgIDxtdGV4dD4mI3gyMjJBOzwvbXRleHQ+CiAgICA8bXJvdz4KICAgICAgICA8bW8gbWF4c2l6ZT0iMSI+KDwvbW8+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG10ZXh0PlEmI3gyMjI5O1I8L210ZXh0PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtbyBtYXhzaXplPSIxIj4pPC9tbz4KICAgIDwvbXJvdz4KPC9tYXRoPg==\" src=\"\" /></p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtc3VwPgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bWk+UDwvbWk+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bW8+JiN4MjI4Mjs8L21vPgogICAgICAgIDwvbXJvdz4KICAgIDwvbXN1cD4KICAgIDxtdGV4dD4mI3gyMjI5OzwvbXRleHQ+CiAgICA8bXJvdz4KICAgICAgICA8bW8gbWF4c2l6ZT0iMSI+KDwvbW8+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1pPlE8L21pPgogICAgICAgICAgICAgICAgICAgIDxtdGV4dD4mI3gyMjJBOzwvbXRleHQ+CiAgICAgICAgICAgICAgICAgICAgPG1pPlI8L21pPgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtbyBtYXhzaXplPSIxIj4pPC9tbz4KICAgIDwvbXJvdz4KPC9tYXRoPg==\" src=\"\" /></p>','A','2'),
('8','<p>In a class of 40 students, each student offers at least one of Physics and Chemistry. If the number of students that offer Physics is three times the number that offer both subjects and the number that offers Chemistry is twice the number that offer Physics, find the number of students that offer Physics only.</p>\n','A. 25 ','B. 15','C. 10 ','D. 5','C','2'),
('9','<p>Find the values of <em>x</em> where the curve y = <em>x</em><sup>3</sup> + 2<em>x</em><sup>2</sup> – 5<em>x</em> – 6 crosses the <em>x</em>-axis.</p>\n','A. -2, -1 and 3','<p>B. -2, 1 and <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />3</p>','<p>C. 2, -1 and <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />3</p>','D. 2, 1 and 3','C','2'),
('10','<p>Find the remainder when 3x<sup>3</sup> + 5<em>x</em><sup>2</sup> – 11<em>x</em> + is divided by <em>x</em> + 3</p>\n','A. 4 ','B. 1','<p>C. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />1</p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />4</p>','B','2'),
('11','<p>Factorize completely ac – 2bc – a<sup>2</sup> + 4b<sup>2</sup></p>\n','<p>A. (a <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" /> 2b)(c + a <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />2b)</p>','<p>B. (a <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" /> 2b)(c - a <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" /> 2b)</p>','<p>C. (a <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />2b)(c + a + 2b)</p>','<p>D. (a <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" /> 2b)(c - a + 2b)</p>','B','2'),
('12','<p><em>y</em> is inversely proportional to <em>x</em> and <em>y</em> = 4 when <em>x</em> = <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MTwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjI8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /> . find <em>x</em> when <em>y</em> = 10</p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bW4+MTwvbW4+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1uPjEwPC9tbj4KICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgIDwvbWZyYWM+CjwvbWF0aD4=\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bW4+MTwvbW4+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgICAgIDxtbj41PC9tbj4KICAgICAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICA8L21mcmFjPgo8L21hdGg+\" src=\"\" /></p>','C. 2',' D. 10','B','2'),
('13','<p>The length L of a simple pendulum varies directly as the square of its period T. if a pendulum with period 4 secs is 64cm long, find the length of a pendulum whose period is 9 sec.</p>\n','A. 36cm','B. 96cm','C. 144cm ','D. 324cm','D','2'),
('14','<p><img src=\"\" style=\"height:204px; width:250px\" /></p>\n\n<p>The shaded area in the diagram above is represented by</p>\n','A. {(x, y) : y + 3x < 6}\n','B. {(x, y) : y + 3x < - 6}\n','C. {(x, y) : y - 3x < 6}\n','D. {(x, y) : y - 3x < - 6}','A','2'),
('15','<p>What are the integral values of x which satisfy the inequality –1 < 3 – 2x <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjY0OzwvbW8+CjwvbWF0aD4=\" src=\"\" /> 5?</p>\n','A. -2, 1, 0, -1','B. -1, 0, 1, 2','C. -1, 0, 1, ','D. 0, 1, 2','C','2'),
('16','<p>The <em>nth</em> terms of two sequences are <em>Q<sub>n</sub> – 3.2<sup>n-2</sup></em> and<em> U<sub>m</sub> = 3.2<sup>2m– 3</sup></em>. find the product of <em>Q<sub>2</sub></em> and <em>U<sub>2</sub></em></p>\n','A. 3 ','B. 6\n','C. 12',' D. 18','D','2'),
('17','<p>Given that the first and fourth terms of a G.P are 6 and 162 respectively, find the sum of the first three terms of the progression.</p>\n','A. 8',' B. 27\n','C. 48 ','D. 78','D','2'),
('18','<p>Find the sum to infinity of the series <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MTwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1uPjI8L21uPgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" />, <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MTwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjY8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" />, <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MTwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgICAgIDxtbj4xODwvbW4+CiAgICAgICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" />,……………</p>\n','A. 1 ','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MzwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjQ8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /></p>','<p>C.<img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bWk+MjwvbWk+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgICAgIDxtbj4zPC9tbj4KICAgICAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICA8L21mcmFjPgo8L21hdGg+\" src=\"\" /></p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1uPjE8L21uPgogICAgICAgIDwvbXJvdz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICAgICAgPG1uPjM8L21uPgogICAgICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgIDwvbWZyYWM+CjwvbWF0aD4=\" src=\"\" />+</p>','B','2'),
('19','<p>If the operation * on the set of integers is defined by p*q = "pq", find the value of 4*(8*32).</p>\n','A. 16 ','B. 8','C. 4 ','D. 3','B','2'),
('20','<p>The sum of the interior angles of a pentagon is 6x +6y. find y in terms of x</p>\n','<p>A. y = 60 <img alt=\"MathML (base64):PG1hdGg+CiAgICA8bW8gbWF0aHNpemU9IjE4Ij4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />x</p>','<p>B. y = 90 <img alt=\"MathML (base64):PG1hdGg+CiAgICA8bW8gbWF0aHNpemU9IjE4Ij4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" /> x</p>','<p>C. y = 120 <img alt=\"MathML (base64):PG1hdGg+CiAgICA8bW8gbWF0aHNpemU9IjE4Ij4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" />x</p>','<p>D. y = 150 <img alt=\"MathML (base64):PG1hdGg+CiAgICA8bW8gbWF0aHNpemU9IjE4Ij4mI3gyMjEyOzwvbW8+CjwvbWF0aD4=\" src=\"\" /> x</p>','B','2'),
('21','<p><img src=\"\" /></p>\n\n<p>P, R and S lie on a circle centre O as shown above while Q lies outside the circle. Find <PSO.</p>\n','A. 35<sup>0</sup> ','B. 40<sup>0</sup> ','C. 45<sup>0</sup> ','D. 55<sup>0</sup>','B','2'),
('22','<p><img src=\"\" /></p>\n\n<p><span style=\"background-color:#ecf0f1\">In the diagram above, PQ =4cm and TS = 6cm, if the area of parallelogram PQTU is 32cm</span><sup><span style=\"background-color:#ecf0f1\">2</span></sup><span style=\"background-color:#ecf0f1\">, find the area of the trapezium PQRU</span></p>\n','<p>A. 24cm<sup>2</sup></p>','<p>B. 48cm<sup>2</sup></p>','<p>C. 60cm<sup>2</sup></p>','<p>D. 72cm<sup>2</sup></p>','D','2'),
('23','<p>An arc of a circle of length 22cm subtends an angleof 3x<sup>0</sup> at the centre of the circle. Find the value of x if the diameter of the circle is 14cm.</p>\n','A. 30<sup>0</sup> ','B. 60<sup>0</sup> ','C. 120<sup>0</sup> ','D. 180<sup>0</sup>','B','2'),
('24','<p>Determine the locus of a point inside a square PQRS which is equidistant from PQ and QR</p>\n','A. The diagonal PR. ','B. The diagonal QS ','C. Side SR ','D. The perpendicular bisector of PQ.','B','2'),
('25','<p>The locus of a point which is 5cm from the line LM is a</p>\n','A. pair of lines on opposite sides of LM and parallel to it, each distances 5cm form LM\n','B. line parallel to LM and 5cm from LM\n','C. pair of parallel lines on one side of LM and parallel to LM\n','D. line distance 10cm from LM and parallel to LM.','A','2'),
('26','<p>Find the value of a<sup>2 </sup>+ b<sup>2</sup> if a + b = 2 and the distance between the points (1, a) ands (b, 1) is 3 units.</p>\n','A. 3',' B. 5\n','C. 11 ','D. 14','C','2'),
('27','<p>Find the midpoint of the line joining P(-3, 5) and Q(5, -3).</p>\n','A. (4, -4) ','B. (4, 4)','C. (2, 2) ','D. (1,1)','D','2'),
('28','<p><img src=\"\" /></p>\n\n<p>Find the value of x in the figure above.</p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtaT4yMDwvbWk+CiAgICA8bXNxcnQ+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjY8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tc3FydD4KPC9tYXRoPg==\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtcm93PgogICAgICAgIDxtbj4xNTwvbW4+CiAgICA8L21yb3c+CiAgICA8bXNxcnQ+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1uPjY8L21uPgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgPC9tc3FydD4KPC9tYXRoPg==\" src=\"\" /></p>','<p>C. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bW4+NTwvbW4+CiAgICAgICAgPC9tcm93PgogICAgPC9tcm93PgogICAgPG1zcXJ0PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgIDxtbj42PC9tbj4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgIDwvbXNxcnQ+CjwvbWF0aD4=\" src=\"\" /></p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgIDxtbj4zPC9tbj4KICAgICAgICAgICAgPC9tcm93PgogICAgICAgIDwvbXJvdz4KICAgIDwvbXJvdz4KICAgIDxtc3FydD4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bW4+NjwvbW4+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICA8L21zcXJ0Pgo8L21hdGg+\" src=\"\" /></p>','C','2'),
('29','<p>Find the derivative of (2 + 3x)(1 - x) with respect to x</p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbj42PC9tbj4KICAgIDxtaT54PC9taT4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+MTwvbW4+CjwvbWF0aD4=\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbj4xPC9tbj4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+NjwvbW4+CiAgICA8bWk+eDwvbWk+CjwvbWF0aD4=\" src=\"\" /></p>','C. 6 ','<p>D.<img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+MzwvbW4+CjwvbWF0aD4=\" src=\"\" /></p>','B','2'),
('30','<p>Find the derivative of the function y = 2x<sup>2</sup>(2x - 1) at the point x = -1</p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+NjwvbW4+CjwvbWF0aD4=\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+NDwvbW4+CjwvbWF0aD4=\" src=\"\" /></p>','C. 16',' D. 18','C','2'),
('31','<p>If y – 3 cos (x/3), find dy/dx when x = 3pi/2</p>\n','A. 2 ','B. 1 ','<p>C. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+MTwvbW4+CjwvbWF0aD4=\" src=\"\" /></p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+MzwvbW4+CjwvbWF0aD4=\" src=\"\" /></p>','C','2'),
('32','<p>What is the rate of change of the volume v of hemisphere with respect to its radius r when r = 2?</p>\n','<p>A. 2<img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtaT4mI3gzQzA7PC9taT4KPC9tYXRoPg==\" src=\"\" /></p>','<p>B. 4<img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtaT4mI3gzQzA7PC9taT4KPC9tYXRoPg==\" src=\"\" /></p>','<p>C. 8<img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtaT4mI3gzQzA7PC9taT4KPC9tYXRoPg==\" src=\"\" /></p>','<p>D. 16<img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtaT4mI3gzQzA7PC9taT4KPC9tYXRoPg==\" src=\"\" /></p>','C','2'),
('33','<p><img src=\"\" style=\"height:102px; width:282px\" /></p>\n','<p>A. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtaT42PC9taT4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bW4+MjwvbW4+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtbj4zPC9tbj4KICAgICAgICA8L21yb3c+CiAgICA8L21mcmFjPgo8L21hdGg+\" src=\"\" /></p>','<p>B. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtZnJhYz4KICAgICAgICA8bXJvdz4KICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICA8bXJvdz4KICAgICAgICAgICAgICAgICAgICA8bW4+MjwvbW4+CiAgICAgICAgICAgICAgICA8L21yb3c+CiAgICAgICAgICAgIDwvbXJvdz4KICAgICAgICA8L21yb3c+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtbj4zPC9tbj4KICAgICAgICA8L21yb3c+CiAgICA8L21mcmFjPgo8L21hdGg+\" src=\"\" /></p>','<p>C. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bWZyYWM+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1uPjI8L21uPgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bW4+MzwvbW4+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /></p>','<p>D. <img alt=\"MathML (base64):PG1hdGggbWF0aHNpemU9IjE4Ij4KICAgIDxtbz4mI3gyMjEyOzwvbW8+CiAgICA8bW4+NjwvbW4+CiAgICA8bWZyYWM+CiAgICAgICAgPG1yb3c+CiAgICAgICAgICAgIDxtcm93PgogICAgICAgICAgICAgICAgPG1yb3c+CiAgICAgICAgICAgICAgICAgICAgPG1uPjI8L21uPgogICAgICAgICAgICAgICAgPC9tcm93PgogICAgICAgICAgICA8L21yb3c+CiAgICAgICAgPC9tcm93PgogICAgICAgIDxtcm93PgogICAgICAgICAgICA8bW4+MzwvbW4+CiAgICAgICAgPC9tcm93PgogICAgPC9tZnJhYz4KPC9tYXRoPg==\" src=\"\" /></p>','A','2'),
('34','<p><img src=\"\" /></p>\n\n<p>The pie chart above shows the distribution of the crops harvested from a farmland in a year. If 3000 tonnes of millet is harvested, what amount of beans is harvested?</p>\n','A. 9000 tonnes ','B. 6000 tonnes','C. 1500 tonnes ','D. 1200 tonnes','D','2'),
('35','<p>I. Rectangular bars of equal width<br />\nII. The height of each rectangular bar<br />\nis proportional to the frequency of<br />\nthe3 corresponding class interval.<br />\nIII. Rectangular bars have common sides with no gaps in between.</p>\n\n<p>A histogram is described by</p>\n','A. I and II ','B. I and III','C. I,II and III ','D. II and III','C','2'),
('36','<p><img src=\"\" style=\"height:245px; width:558px\" /></p>\n\n<p>The graph above shows the cumulative frequency curve of the distribution of marks in a class test.What percentage of the students scored more than 20 marks?</p>\n','A. 68% ','B. 28%','C. 17%','D. 8%','B','2'),
('37','<p>Themean age of a group of students is 15 years.When the age of a teacher, 45 years old, is added to the ages of the students, the mean of their ages becomes 18 years. Find the number of students in the group.</p>\n','A. 7 ','B. 9\n','C. 15',' D. 42','B','2'),
('38','<p>The weights of 10 pupils in a class are 15kg, 16kg, 17kg, 18kg, 16kg, 17kg, 17kg, 17kg, 18kg and 16kg. What is the range of this distribution?</p>\n','A. 1 ','B. 2','C. 3',' D. 4','C','2'),
('39','<p>Find the mean deviation of 1, 2, 3 and 4</p>\n','A. 1.0 ','B. 1.5','C. 2.0',' D. 2.5','A','2'),
('40','<p>In how many ways <strong>can 2 students</strong> be selected from a group of 5 <span style=\"color:#ff0066\">students</span> in a debating<u> <em>competition</em></u>?</p>\n','A. 10 ways.','B. 15 ways.','C. 20 ways','D. 25 ways.','A','2');--end