forked from rg089/Aspect-Based-Sentiment-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ae.py
245 lines (182 loc) · 9.17 KB
/
train_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
from transformers import AutoModel, AutoTokenizer
from torch.optim import AdamW
import numpy as np
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
from utils import load_data, start_table, flatten, plot_loss, extract_aspects
import argparse, os
class BERT_LSTM(nn.Module):
def __init__(self, bert_path, hidden_dim, num_layers, dropout, num_classes, bidirectional=False, freeze_bert=False):
super(BERT_LSTM, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.num_classes = num_classes
self.dropout = dropout
self.bidirectional = bidirectional
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.bert = AutoModel.from_pretrained(bert_path).to(self.device)
self.lstm = nn.LSTM(self.bert.config.hidden_size, hidden_dim, num_layers, dropout=dropout, batch_first=True, bidirectional=bidirectional)
self.fc = nn.Linear(hidden_dim*2 if bidirectional else hidden_dim, num_classes)
if freeze_bert:
for param in self.bert.parameters():
param.requires_grad = False
def forward(self, tokenized, h=None, c=None):
batch_size = tokenized['input_ids'].size(0)
if h is None:
h, c = self.init_hidden(batch_size)
outputs = self.bert(**tokenized)
hidden_outputs, pooled_outputs = outputs[0], outputs[1]
out, (h, c) = self.lstm(hidden_outputs, (h, c))
out = self.fc(out)
return out, (h, c)
def init_hidden(self, batch_size):
num_l = self.num_layers * 2 if self.bidirectional else self.num_layers
hidden = torch.zeros(num_l, batch_size, self.hidden_dim).to(self.device)
cell = torch.zeros(num_l, batch_size, self.hidden_dim).to(self.device)
return hidden, cell
def mask(pred, tags):
tags = np.array(tags); pred = np.array(pred)
assert len(pred) == len(tags)
mask = tags != -100
tags = tags[mask]; pred = pred[mask]
assert len(pred) == len(tags)
return pred, tags
def compute_metrics(pred, tags):
pred = flatten(pred); tags = flatten(tags)
pred, tags = mask(pred, tags)
accuracy = (pred == tags).mean()
print(classification_report(tags, pred, target_names=['B', 'I', 'O', 'X']))
return accuracy
def train_epoch(model, optimizer, criterion, train_loader, val_loader, device, epoch_num, plot_dir, print_every=50):
total_loss = 0
batch_losses = []
eval_losses = []
for idx, sample in enumerate(train_loader):
model.train()
text = sample['text']
tokenized = tokenizer(text, padding="max_length", max_length=75, truncation=True, return_tensors="pt").to(device)
tags = sample['tags']
optimizer.zero_grad()
output, (_, _) = model(tokenized)
output = output.permute(0, 2, 1) # Changing to (batch_size, num_classes, seq_len) as expected by cross_entropy
loss = criterion(output, tags)
loss.backward()
optimizer.step()
total_loss += loss.item()
batch_losses.append(loss.item())
if (idx+1) % print_every == 0:
eval_loss = evaluate(model, criterion, val_loader, device)
eval_losses.append(eval_loss)
print(f"|{epoch_num:^15}|{idx+1:^15}|{loss.item():^16.4f}|{eval_loss:^15.4f}|")
plot_loss(batch_losses, "Training Loss", "Step", "Loss", plot_dir+ "/batch_loss.png")
epoch_loss = total_loss / len(train_loader)
print("-"*66 + "\n")
return model, epoch_loss, batch_losses, eval_losses
def evaluate(model, criterion, test_loader, device):
model.eval()
total_loss = 0
with torch.no_grad():
for idx, sample in enumerate(test_loader):
text = sample['text']
tokenized = tokenizer(text, padding="max_length", max_length=75, truncation=True, return_tensors="pt").to(device)
tags = sample['tags']
output, (_, _) = model(tokenized)
output = output.permute(0, 2, 1) # Changing to (batch_size, num_classes, seq_len) as expected by cross_entropy
loss = criterion(output, tags)
total_loss += loss.item()
epoch_loss = total_loss / len(test_loader)
return epoch_loss
def evaluate_complete(model, test_loader, device):
model.eval()
outputs = None
tags = None
with torch.no_grad():
for idx, sample in enumerate(test_loader):
text = sample['text']
tags_ = sample['tags'].cpu().numpy()
tokenized = tokenizer(text, padding="max_length", max_length=75, truncation=True, return_tensors="pt").to(device)
output, (_, _) = model(tokenized)
output= output.cpu().numpy()
# Concatenate to the outputs
outputs = np.concatenate((outputs, output), axis=0) if outputs is not None else output
tags = np.concatenate((tags, tags_), axis=0) if tags is not None else tags_
accuracy = compute_metrics(outputs, tags)
return accuracy
def predict_sample(text, model, tokenizer):
model.eval()
with torch.no_grad():
tokenized = tokenizer(text, padding="max_length", max_length=75, truncation=True, return_tensors="pt").to(device)
output, (_, _) = model(tokenized)
output = output.argmax(dim=-1).cpu()[0].tolist()
tokens = tokenizer.tokenize(text, add_special_tokens=True, max_length=75, padding='max_length', truncation=True)
idx = tokens.index("[SEP]")
output = output[1:idx]
tokens = tokens[1:idx]
aspects = extract_aspects(tokens, output)
return aspects
def train(model, optimizer, criterion, epochs, train_loader, val_loader, device, plot_dir, print_every=20):
epoch_losses = []
batch_losses = []
eval_losses = []
for epoch in range(epochs):
# print(f"[INFO] STARTING EPOCH {epoch+1}:\n")
start_table()
model, epoch_loss, batch_losses_, eval_losses = train_epoch(model, optimizer, criterion, train_loader, val_loader, device, epoch+1, plot_dir, print_every)
epoch_losses.append(epoch_loss)
batch_losses.extend(batch_losses_)
eval_losses.extend(eval_losses)
print(f"EPOCH: {epoch+1} AVG LOSS: {epoch_loss}\n")
evaluate_complete(model, val_loader, device)
plt.figure()
plot_loss(batch_losses, "Training Loss", "Step", "Loss", plot_dir+"/batch_loss.png")
plt.figure()
plot_loss(epoch_losses, "Training Loss", "Epoch", "Loss", plot_dir+"/epoch_loss.png")
return model, epoch_losses, batch_losses, eval_losses
parser = argparse.ArgumentParser()
parser.add_argument("--bert_path", type=str, default="bert-base-cased", help="Path to BERT model")
parser.add_argument("--hidden_dim", type=int, default=128, help="Hidden dimension of LSTM")
parser.add_argument("--epochs", type=int, default=10, help="Number of epochs to train")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size")
parser.add_argument("--freeze_bert", type=bool, default=True, help="Freeze BERT weights")
parser.add_argument("--num_layers", type=int, default=2, help="Number of Layers in LSTM")
parser.add_argument("--dropout", type=float, default=0.1, help="Dropout")
parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate")
parser.add_argument("--save_path", type=str, default="models/BERT_LSTM.pt", help="Path to save model")
parser.add_argument("--plot_dir", type=str, default="plots/train_ae", help="Directory to save the plots")
parser.add_argument("--log_every", type=int, default=10, help="Log every n batches")
parser.add_argument("--dataset", type=str, default="laptops", help="Dataset to train on")
args = parser.parse_args()
# PARAMS
bert_path = args.bert_path
hidden_dim = args.hidden_dim
num_layers = args.num_layers
dropout = args.dropout
num_classes = 5
bidirectional = True
freeze_bert = args.freeze_bert
if freeze_bert: print("[INFO] BERT has been frozen!\n")
batch_size = args.batch_size
shuffle = True
dataset = args.dataset
epochs = args.epochs
print_every = args.log_every
plot_dir = args.plot_dir + "_" + dataset
save_path = args.save_path.split(".pt")[0] + "_" + dataset + ".pt"
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
train_loader = load_data(f"data/train_{dataset}.json", batch_size=batch_size, shuffle=shuffle)
val_loader = load_data(f"data/test_{dataset}.json", batch_size=batch_size, shuffle=shuffle)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained(bert_path)
model = BERT_LSTM(bert_path, hidden_dim, num_layers, dropout, num_classes, bidirectional, freeze_bert).to(device)
criterion = nn.CrossEntropyLoss(ignore_index=-100)
optimizer = AdamW(model.parameters(), lr=args.lr)
model, epoch_losses, batch_losses, eval_losses = train(model,
optimizer, criterion, epochs, train_loader, val_loader, device, plot_dir, print_every)
torch.save(model, save_path)
"""
To train, use the following command:
python train_ae.py --bert_path bert-base-cased --hidden_dim 128 --epochs 10 --batch_size 16 --freeze_bert True --num_layers 2 --dropout 0.1 --lr 5e-5 --save_path models/BERT_LSTM.pt --plot_dir plots/train_ae --dataset laptops
"""