Skip to content

Commit

Permalink
[ChatQnA] Support the replica tuning for ChatQnA (#116)
Browse files Browse the repository at this point in the history
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
Zhenzhong1 and pre-commit-ci[bot] authored Sep 10, 2024
1 parent cf8bd83 commit 484b69a
Show file tree
Hide file tree
Showing 22 changed files with 3,117 additions and 0 deletions.
1 change: 1 addition & 0 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ repos:
files: (.*\.(py|md|rst|yaml|yml|json|ts|js|html|svelte|sh))$
- id: check-json
- id: check-yaml
args: [--allow-multiple-documents]
- id: debug-statements
- id: requirements-txt-fixer
- id: trailing-whitespace
Expand Down
151 changes: 151 additions & 0 deletions evals/auto_tuning/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# Auto-Tuning for ChatQnA: Optimizing Resource Allocation in Kubernetes

This document describes the Auto-Tuning framework, a tool designed to streamline deployment strategies for resource-intensive services, particularly in ChatQnA environments. It leverages Kubernetes for container orchestration and integrates experimental data with out prior knowledge to fine-tune deployments for optimal performance.

## Key Features
* Hardware Efficiency: Focuses on adjusting replica counts and maximizing the utilization of CPU and HPU (Habana Processing Unit) resources.

* Theoretical and Experimental Optimization: Integrates theoretical best practices with our prior knowledge to ensure optimal resource allocation for services.

# Usage

To generate the strategy.json configuration file for deployment, use the following command:


```bash
# Kubernetes Deployment
python3 tuning.py --tuning_config replica_tuning_config.json --hardware_info hardware_info_gaudi.json --service_info chatqna_neuralchat_rerank_latest.yaml

# Note: Add --config_only to output deployment configs only.
```

## Configuration Files
1. hardware_info_gaudi.json: Specifies the hardware details (CPU, HPU, etc.).

2. chatqna_neuralchat_rerank_latest.yaml: Contains service deployment information.

3. tuning_config.json: Customizes tuning parameters for replica counts and granularity.

### Hardrware_info.json
This file lists only the hardware devices to be used in deployment.

```json
{
"device_0": {
"ip": ["10.239.1.5", "10.239.10.6"],
"type": "hpu",
"sockets": 2,
"cores_per_socket": 64,
"num_cards": 8
}
}
```
Please refer to `hardware_info_gaudi.json` for more details.

### chatqna_neuralchat_rerank_latest.yaml
This file includes all services that will be deployed.
```yaml
opea_micro_services:
data_prep:
... ...
embedding:
... ...

reranking:
... ...

llm:
opea/llm-tgi:
tag: latest
type: cpu
dependency:
ghcr.io/huggingface/tgi-gaudi:
tag: 2.0.4
type: hpu
requirements:
model_id: "Intel/neural-chat-7b-v3-3"

opea_mega_service:
opea/chatqna:
tag: latest
type: cpu
```
Please refer to `chatqna_neuralchat_rerank_latest.yaml` for more details.

### Tuning Config Parameters

`embedding_replicas_granularity = 1`: This defines the step size for scaling the number of replicas for the embedding server.
* Value (1): Each scaling operation increases or decreases the number of replicas by 1 at a time.

`embedding_replicas_min = 1`: This sets the minimum number of replicas allowed for the embedding server.
* Value (1): The service will always have at least 1 replica running, ensuring that it is available for deployment.

`embedding_replicas_max = 4`: This defines the maximum number of replicas allowed for the embedding server.
* Value (4): The service can be scaled up to a maximum of 4 replicas, limiting resource consumption and avoiding over-provisioning.

`microservice_replicas_granularity = 1`: This specifies the scaling step size for other microservices (such as retrieval, dataprep, etc.).
* Value (1): Similar to the embedding_replicas_granularity, the number of replicas for these microservices will scale by 1 replica at a time.

`microservice_replicas_min = 1`: This parameter sets the minimum number of replicas for these microservices.
* Value (1): Ensures that each microservice always has at least 1 replica running.

`microservice_replicas_max = 4`: This defines the upper limit for scaling replicas for these microservices.
* Value (4): The maximum number of replicas allowed for the microservices is 4.


If you want to adjust the default tuning parameters, just create a replica_tuning_config.json file. For example:

```json
{
"embedding_replicas_granularity": 1,
"embedding_replicas_min": 1,
"embedding_replicas_max": 4,
"microservice_replicas_granularity": 1,
"microservice_replicas_min": 1,
"microservice_replicas_max": 4
}
```
Please refer to `replica_tuning_config.json` for more details.

## Output

The output of the auto-tuning process includes two key components:
1. strategy_files: Contains optimized configurations for deploying services, such as replica counts and hardware resource allocations.

2. K8S manifests: Provides the Kubernetes deployment specifications, including pod definitions and resource limits, ready for deployment.

Example of a strategy file:
```json
{
"embedding-dependency": {
"type": "cpu",
"image": "ghcr.io/huggingface/text-embeddings-inference:cpu-1.5",
"model_id": "BAAI/bge-base-en-v1.5",
"replica": 1
},
"llm-microservice": {
"type": "cpu",
"image": "opea/llm-tgi:latest",
"replica": 4
},
... ...
"reranking-dependency": {
"type": "hpu",
"image": "opea/tei-gaudi:latest",
"model_id": "BAAI/bge-reranker-base",
"replica": 1,
"cards": 1
},
"chatqna_mega_service": {
"image": "opea/chatqna:latest",
"type": "cpu",
"replica": 4
}
}
```

Both the K8S manifests and strategy files are generated in the current directory, providing everything needed for deployment.

Deployment methods: simply run `kubectl apply -f` on the newly generated *_run.yaml files and the chatqna_config_map.
23 changes: 23 additions & 0 deletions evals/auto_tuning/baseline/chatqna_config_map.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

apiVersion: v1
kind: ConfigMap
metadata:
name: qna-config
namespace: default
data:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
RERANK_MODEL_ID: BAAI/bge-reranker-base
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
INDEX_NAME: rag-redis
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
EMBEDDING_SERVICE_HOST_IP: embedding-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
RERANK_SERVICE_HOST_IP: reranking-svc
NODE_SELECTOR: chatqna-opea
LLM_SERVICE_HOST_IP: llm-svc
55 changes: 55 additions & 0 deletions evals/auto_tuning/baseline/chatqna_mega_service.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

apiVersion: apps/v1
kind: Deployment
metadata:
name: chatqna-backend-server-deploy
namespace: default
spec:
replicas: 1
selector:
matchLabels:
app: chatqna-backend-server-deploy
template:
metadata:
annotations:
sidecar.istio.io/rewriteAppHTTPProbers: 'true'
labels:
app: chatqna-backend-server-deploy
spec:
nodeSelector:
node-type: chatqna-opea
topologySpreadConstraints:
- maxSkew: 1
topologyKey: kubernetes.io/hostname
whenUnsatisfiable: ScheduleAnyway
labelSelector:
matchLabels:
app: chatqna-backend-server-deploy
hostIPC: true
containers:
- envFrom:
- configMapRef:
name: qna-config
image: opea/chatqna:latest
imagePullPolicy: IfNotPresent
name: chatqna-backend-server-deploy
args: null
ports:
- containerPort: 8888
serviceAccountName: default
---
kind: Service
apiVersion: v1
metadata:
name: chatqna-backend-server-svc
spec:
type: NodePort
selector:
app: chatqna-backend-server-deploy
ports:
- name: service
port: 8888
targetPort: 8888
nodePort: 30888
76 changes: 76 additions & 0 deletions evals/auto_tuning/baseline/dataprep-microservice.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

---
apiVersion: apps/v1
kind: Deployment
metadata:
name: dataprep-deploy
namespace: default
spec:
replicas: 1
selector:
matchLabels:
app: dataprep-deploy
template:
metadata:
annotations:
sidecar.istio.io/rewriteAppHTTPProbers: 'true'
labels:
app: dataprep-deploy
spec:
nodeSelector:
node-type: chatqna-opea
topologySpreadConstraints:
- maxSkew: 1
topologyKey: kubernetes.io/hostname
whenUnsatisfiable: ScheduleAnyway
labelSelector:
matchLabels:
app: dataprep-deploy
hostIPC: true
containers:
- env:
- name: REDIS_URL
valueFrom:
configMapKeyRef:
name: qna-config
key: REDIS_URL
- name: TEI_ENDPOINT
valueFrom:
configMapKeyRef:
name: qna-config
key: TEI_EMBEDDING_ENDPOINT
- name: INDEX_NAME
valueFrom:
configMapKeyRef:
name: qna-config
key: INDEX_NAME
image: opea/dataprep-redis:latest
imagePullPolicy: IfNotPresent
name: dataprep-deploy
args: null
ports:
- containerPort: 6007
- containerPort: 6008
- containerPort: 6009
serviceAccountName: default
---
kind: Service
apiVersion: v1
metadata:
name: dataprep-svc
spec:
type: ClusterIP
selector:
app: dataprep-deploy
ports:
- name: port1
port: 6007
targetPort: 6007
- name: port2
port: 6008
targetPort: 6008
- name: port3
port: 6009
targetPort: 6009
63 changes: 63 additions & 0 deletions evals/auto_tuning/baseline/embedding-dependency.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

---
apiVersion: apps/v1
kind: Deployment
metadata:
name: embedding-dependency-deploy
namespace: default
spec:
replicas: 1
selector:
matchLabels:
app: embedding-dependency-deploy
template:
metadata:
annotations:
sidecar.istio.io/rewriteAppHTTPProbers: 'true'
labels:
app: embedding-dependency-deploy
spec:
nodeSelector:
node-type: chatqna-opea
containers:
- envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
name: embedding-dependency-deploy
args:
- --model-id
- $(EMBEDDING_MODEL_ID)
- --auto-truncate
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
ports:
- containerPort: 80
serviceAccountName: default
volumes:
- name: model-volume
hostPath:
path: /mnt/models
type: Directory
- name: shm
emptyDir:
medium: Memory
sizeLimit: 1Gi
---
kind: Service
apiVersion: v1
metadata:
name: embedding-dependency-svc
spec:
type: ClusterIP
selector:
app: embedding-dependency-deploy
ports:
- name: service
port: 6006
targetPort: 80
Loading

0 comments on commit 484b69a

Please sign in to comment.