You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
配置文件如下:
base = [
'../base/default_runtime.py',
'../base/datasets/denoising-gaussian_gray_test_config.py'
]
experiment_name = 'swinir_s128w8d6e180_8xb1-lr2e-4-1600k_dfwb-grayDN15'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs/'
modify sigma of RandomNoise
sigma = 15
test_dataloader = base.test_dataloader
for dataloader in test_dataloader:
test_pipeline = dataloader['dataset']['pipeline']
test_pipeline[2]['params']['gaussian_sigma'] = [sigma, sigma]
model settings
model = dict(
type='BaseEditModel',
generator=dict(
type='SwinIRNet',
upscale=1,
in_chans=1,
img_size=128,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler='',
resi_connection='1conv'),
pixel_loss=dict(type='CharbonnierLoss', eps=1e-9),
data_preprocessor=dict(type='DataPreprocessor', mean=[0.], std=[255.]))
train_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
color_type='grayscale',
imdecode_backend='cv2'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='grayscale',
imdecode_backend='cv2'),
dict(type='SetValues', dictionary=dict(scale=1)),
dict(type='PairedRandomCrop', gt_patch_size=128),
dict(
type='Flip',
keys=['img', 'gt'],
flip_ratio=0.5,
direction='horizontal'),
dict(
type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['img', 'gt'], transpose_ratio=0.5),
dict(
type='RandomNoise',
params=dict(
noise_type=['gaussian'],
noise_prob=[1],
gaussian_sigma=[sigma, sigma],
gaussian_gray_noise_prob=0),
keys=['img']),
dict(type='PackInputs')
]
val_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
color_type='grayscale',
imdecode_backend='cv2'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='grayscale',
imdecode_backend='cv2'),
dict(
type='RandomNoise',
params=dict(
noise_type=['gaussian'],
noise_prob=[1],
gaussian_sigma=[sigma, sigma],
gaussian_gray_noise_prob=0),
keys=['img']),
dict(type='PackInputs')
]
dataset settings
dataset_type = 'BasicImageDataset'
data_root = 'data'
train_dataloader = dict(
num_workers=4,
batch_size=1,
drop_last=True,
persistent_workers=False,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file='meta_info_DFWB8550sub_GT.txt',
metainfo=dict(dataset_type='dfwb', task_name='denoising'),
data_root=data_root + '/DFWB',
data_prefix=dict(img='', gt=''),
filename_tmpl=dict(img='{}', gt='{}'),
pipeline=train_pipeline))
val_dataloader = dict(
num_workers=4,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
metainfo=dict(dataset_type='set12', task_name='denoising'),
data_root=data_root + '/Set12',
data_prefix=dict(img='', gt=''),
pipeline=val_pipeline))
val_evaluator = [
dict(type='PSNR', prefix='Set12'),
dict(type='SSIM', prefix='Set12'),
]
train_cfg = dict(
type='IterBasedTrainLoop', max_iters=1_600_000, val_interval=5000)
val_cfg = dict(type='ValLoop')
optimizer
optim_wrapper = dict(
constructor='DefaultOptimWrapperConstructor',
type='OptimWrapper',
optimizer=dict(type='Adam', lr=2e-4, betas=(0.9, 0.999)))
learning policy
param_scheduler = dict(
type='MultiStepLR',
by_epoch=False,
milestones=[800000, 1200000, 1400000, 1500000, 1600000],
gamma=0.5)
为什么加噪声的时候sigma=15,噪声就把原来的图全部覆盖了?
从左到右分别是 原图, 输入图片,模型输出图片
Beta Was this translation helpful? Give feedback.
All reactions