-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
optimize_anchors.py
370 lines (314 loc) · 12.9 KB
/
optimize_anchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Copyright (c) OpenMMLab. All rights reserved.
"""Optimize anchor settings on a specific dataset.
This script provides two method to optimize YOLO anchors including k-means
anchor cluster and differential evolution. You can use ``--algorithm k-means``
and ``--algorithm differential_evolution`` to switch two method.
Example:
Use k-means anchor cluster::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--output-dir ${OUTPUT_DIR}
Use differential evolution to optimize anchors::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm differential_evolution \
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--output-dir ${OUTPUT_DIR}
"""
import argparse
import os.path as osp
import mmcv
import numpy as np
import torch
from mmcv import Config
from scipy.optimize import differential_evolution
from mmdet.core import bbox_cxcywh_to_xyxy, bbox_overlaps, bbox_xyxy_to_cxcywh
from mmdet.datasets import build_dataset
from mmdet.utils import get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='Optimize anchor parameters.')
parser.add_argument('config', help='Train config file path.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for calculating.')
parser.add_argument(
'--input-shape',
type=int,
nargs='+',
default=[608, 608],
help='input image size')
parser.add_argument(
'--algorithm',
default='differential_evolution',
help='Algorithm used for anchor optimizing.'
'Support k-means and differential_evolution for YOLO.')
parser.add_argument(
'--iters',
default=1000,
type=int,
help='Maximum iterations for optimizer.')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='Path to save anchor optimize result.')
args = parser.parse_args()
return args
class BaseAnchorOptimizer:
"""Base class for anchor optimizer.
Args:
dataset (obj:`Dataset`): Dataset object.
input_shape (list[int]): Input image shape of the model.
Format in [width, height].
logger (obj:`logging.Logger`): The logger for logging.
device (str, optional): Device used for calculating.
Default: 'cuda:0'
out_dir (str, optional): Path to save anchor optimize result.
Default: None
"""
def __init__(self,
dataset,
input_shape,
logger,
device='cuda:0',
out_dir=None):
self.dataset = dataset
self.input_shape = input_shape
self.logger = logger
self.device = device
self.out_dir = out_dir
bbox_whs, img_shapes = self.get_whs_and_shapes()
ratios = img_shapes.max(1, keepdims=True) / np.array([input_shape])
# resize to input shape
self.bbox_whs = bbox_whs / ratios
def get_whs_and_shapes(self):
"""Get widths and heights of bboxes and shapes of images.
Returns:
tuple[np.ndarray]: Array of bbox shapes and array of image
shapes with shape (num_bboxes, 2) in [width, height] format.
"""
self.logger.info('Collecting bboxes from annotation...')
bbox_whs = []
img_shapes = []
prog_bar = mmcv.ProgressBar(len(self.dataset))
for idx in range(len(self.dataset)):
ann = self.dataset.get_ann_info(idx)
data_info = self.dataset.data_infos[idx]
img_shape = np.array([data_info['width'], data_info['height']])
gt_bboxes = ann['bboxes']
for bbox in gt_bboxes:
wh = bbox[2:4] - bbox[0:2]
img_shapes.append(img_shape)
bbox_whs.append(wh)
prog_bar.update()
print('\n')
bbox_whs = np.array(bbox_whs)
img_shapes = np.array(img_shapes)
self.logger.info(f'Collected {bbox_whs.shape[0]} bboxes.')
return bbox_whs, img_shapes
def get_zero_center_bbox_tensor(self):
"""Get a tensor of bboxes centered at (0, 0).
Returns:
Tensor: Tensor of bboxes with shape (num_bboxes, 4)
in [xmin, ymin, xmax, ymax] format.
"""
whs = torch.from_numpy(self.bbox_whs).to(
self.device, dtype=torch.float32)
bboxes = bbox_cxcywh_to_xyxy(
torch.cat([torch.zeros_like(whs), whs], dim=1))
return bboxes
def optimize(self):
raise NotImplementedError
def save_result(self, anchors, path=None):
anchor_results = []
for w, h in anchors:
anchor_results.append([round(w), round(h)])
self.logger.info(f'Anchor optimize result:{anchor_results}')
if path:
json_path = osp.join(path, 'anchor_optimize_result.json')
mmcv.dump(anchor_results, json_path)
self.logger.info(f'Result saved in {json_path}')
class YOLOKMeansAnchorOptimizer(BaseAnchorOptimizer):
r"""YOLO anchor optimizer using k-means. Code refer to `AlexeyAB/darknet.
<https://github.com/AlexeyAB/darknet/blob/master/src/detector.c>`_.
Args:
num_anchors (int) : Number of anchors.
iters (int): Maximum iterations for k-means.
"""
def __init__(self, num_anchors, iters, **kwargs):
super(YOLOKMeansAnchorOptimizer, self).__init__(**kwargs)
self.num_anchors = num_anchors
self.iters = iters
def optimize(self):
anchors = self.kmeans_anchors()
self.save_result(anchors, self.out_dir)
def kmeans_anchors(self):
self.logger.info(
f'Start cluster {self.num_anchors} YOLO anchors with K-means...')
bboxes = self.get_zero_center_bbox_tensor()
cluster_center_idx = torch.randint(
0, bboxes.shape[0], (self.num_anchors, )).to(self.device)
assignments = torch.zeros((bboxes.shape[0], )).to(self.device)
cluster_centers = bboxes[cluster_center_idx]
if self.num_anchors == 1:
cluster_centers = self.kmeans_maximization(bboxes, assignments,
cluster_centers)
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors
prog_bar = mmcv.ProgressBar(self.iters)
for i in range(self.iters):
converged, assignments = self.kmeans_expectation(
bboxes, assignments, cluster_centers)
if converged:
self.logger.info(f'K-means process has converged at iter {i}.')
break
cluster_centers = self.kmeans_maximization(bboxes, assignments,
cluster_centers)
prog_bar.update()
print('\n')
avg_iou = bbox_overlaps(bboxes,
cluster_centers).max(1)[0].mean().item()
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
self.logger.info(f'Anchor cluster finish. Average IOU: {avg_iou}')
return anchors
def kmeans_maximization(self, bboxes, assignments, centers):
"""Maximization part of EM algorithm(Expectation-Maximization)"""
new_centers = torch.zeros_like(centers)
for i in range(centers.shape[0]):
mask = (assignments == i)
if mask.sum():
new_centers[i, :] = bboxes[mask].mean(0)
return new_centers
def kmeans_expectation(self, bboxes, assignments, centers):
"""Expectation part of EM algorithm(Expectation-Maximization)"""
ious = bbox_overlaps(bboxes, centers)
closest = ious.argmax(1)
converged = (closest == assignments).all()
return converged, closest
class YOLODEAnchorOptimizer(BaseAnchorOptimizer):
"""YOLO anchor optimizer using differential evolution algorithm.
Args:
num_anchors (int) : Number of anchors.
iters (int): Maximum iterations for k-means.
strategy (str): The differential evolution strategy to use.
Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'currenttobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'currenttobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
Default: 'best1bin'.
population_size (int): Total population size of evolution algorithm.
Default: 15.
convergence_thr (float): Tolerance for convergence, the
optimizing stops when ``np.std(pop) <= abs(convergence_thr)
+ convergence_thr * np.abs(np.mean(population_energies))``,
respectively. Default: 0.0001.
mutation (tuple[float]): Range of dithering randomly changes the
mutation constant. Default: (0.5, 1).
recombination (float): Recombination constant of crossover probability.
Default: 0.7.
"""
def __init__(self,
num_anchors,
iters,
strategy='best1bin',
population_size=15,
convergence_thr=0.0001,
mutation=(0.5, 1),
recombination=0.7,
**kwargs):
super(YOLODEAnchorOptimizer, self).__init__(**kwargs)
self.num_anchors = num_anchors
self.iters = iters
self.strategy = strategy
self.population_size = population_size
self.convergence_thr = convergence_thr
self.mutation = mutation
self.recombination = recombination
def optimize(self):
anchors = self.differential_evolution()
self.save_result(anchors, self.out_dir)
def differential_evolution(self):
bboxes = self.get_zero_center_bbox_tensor()
bounds = []
for i in range(self.num_anchors):
bounds.extend([(0, self.input_shape[0]), (0, self.input_shape[1])])
result = differential_evolution(
func=self.avg_iou_cost,
bounds=bounds,
args=(bboxes, ),
strategy=self.strategy,
maxiter=self.iters,
popsize=self.population_size,
tol=self.convergence_thr,
mutation=self.mutation,
recombination=self.recombination,
updating='immediate',
disp=True)
self.logger.info(
f'Anchor evolution finish. Average IOU: {1 - result.fun}')
anchors = [(w, h) for w, h in zip(result.x[::2], result.x[1::2])]
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors
@staticmethod
def avg_iou_cost(anchor_params, bboxes):
assert len(anchor_params) % 2 == 0
anchor_whs = torch.tensor(
[[w, h]
for w, h in zip(anchor_params[::2], anchor_params[1::2])]).to(
bboxes.device, dtype=bboxes.dtype)
anchor_boxes = bbox_cxcywh_to_xyxy(
torch.cat([torch.zeros_like(anchor_whs), anchor_whs], dim=1))
ious = bbox_overlaps(bboxes, anchor_boxes)
max_ious, _ = ious.max(1)
cost = 1 - max_ious.mean().item()
return cost
def main():
logger = get_root_logger()
args = parse_args()
cfg = args.config
cfg = Config.fromfile(cfg)
input_shape = args.input_shape
assert len(input_shape) == 2
anchor_type = cfg.model.bbox_head.anchor_generator.type
assert anchor_type == 'YOLOAnchorGenerator', \
f'Only support optimize YOLOAnchor, but get {anchor_type}.'
base_sizes = cfg.model.bbox_head.anchor_generator.base_sizes
num_anchors = sum([len(sizes) for sizes in base_sizes])
train_data_cfg = cfg.data.train
while 'dataset' in train_data_cfg:
train_data_cfg = train_data_cfg['dataset']
dataset = build_dataset(train_data_cfg)
if args.algorithm == 'k-means':
optimizer = YOLOKMeansAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchors=num_anchors,
iters=args.iters,
logger=logger,
out_dir=args.output_dir)
elif args.algorithm == 'differential_evolution':
optimizer = YOLODEAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchors=num_anchors,
iters=args.iters,
logger=logger,
out_dir=args.output_dir)
else:
raise NotImplementedError(
f'Only support k-means and differential_evolution, '
f'but get {args.algorithm}')
optimizer.optimize()
if __name__ == '__main__':
main()