-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
basicvsr_net.py
419 lines (336 loc) · 13.8 KB
/
basicvsr_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import load_checkpoint
from mmedit.models.common import (PixelShufflePack, ResidualBlockNoBN,
flow_warp, make_layer)
from mmedit.models.registry import BACKBONES
from mmedit.utils import get_root_logger
@BACKBONES.register_module()
class BasicVSRNet(nn.Module):
"""BasicVSR network structure for video super-resolution.
Support only x4 upsampling.
Paper:
BasicVSR: The Search for Essential Components in Video Super-Resolution
and Beyond, CVPR, 2021
Args:
mid_channels (int): Channel number of the intermediate features.
Default: 64.
num_blocks (int): Number of residual blocks in each propagation branch.
Default: 30.
spynet_pretrained (str): Pre-trained model path of SPyNet.
Default: None.
"""
def __init__(self, mid_channels=64, num_blocks=30, spynet_pretrained=None):
super().__init__()
self.mid_channels = mid_channels
# optical flow network for feature alignment
self.spynet = SPyNet(pretrained=spynet_pretrained)
# propagation branches
self.backward_resblocks = ResidualBlocksWithInputConv(
mid_channels + 3, mid_channels, num_blocks)
self.forward_resblocks = ResidualBlocksWithInputConv(
mid_channels + 3, mid_channels, num_blocks)
# upsample
self.fusion = nn.Conv2d(
mid_channels * 2, mid_channels, 1, 1, 0, bias=True)
self.upsample1 = PixelShufflePack(
mid_channels, mid_channels, 2, upsample_kernel=3)
self.upsample2 = PixelShufflePack(
mid_channels, 64, 2, upsample_kernel=3)
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
self.img_upsample = nn.Upsample(
scale_factor=4, mode='bilinear', align_corners=False)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
def check_if_mirror_extended(self, lrs):
"""Check whether the input is a mirror-extended sequence.
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the
(t-1-i)-th frame.
Args:
lrs (tensor): Input LR images with shape (n, t, c, h, w)
"""
self.is_mirror_extended = False
if lrs.size(1) % 2 == 0:
lrs_1, lrs_2 = torch.chunk(lrs, 2, dim=1)
if torch.norm(lrs_1 - lrs_2.flip(1)) == 0:
self.is_mirror_extended = True
def compute_flow(self, lrs):
"""Compute optical flow using SPyNet for feature warping.
Note that if the input is an mirror-extended sequence, 'flows_forward'
is not needed, since it is equal to 'flows_backward.flip(1)'.
Args:
lrs (tensor): Input LR images with shape (n, t, c, h, w)
Return:
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the
flows used for forward-time propagation (current to previous).
'flows_backward' corresponds to the flows used for
backward-time propagation (current to next).
"""
n, t, c, h, w = lrs.size()
lrs_1 = lrs[:, :-1, :, :, :].reshape(-1, c, h, w)
lrs_2 = lrs[:, 1:, :, :, :].reshape(-1, c, h, w)
flows_backward = self.spynet(lrs_1, lrs_2).view(n, t - 1, 2, h, w)
if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
flows_forward = None
else:
flows_forward = self.spynet(lrs_2, lrs_1).view(n, t - 1, 2, h, w)
return flows_forward, flows_backward
def forward(self, lrs):
"""Forward function for BasicVSR.
Args:
lrs (Tensor): Input LR sequence with shape (n, t, c, h, w).
Returns:
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
"""
n, t, c, h, w = lrs.size()
assert h >= 64 and w >= 64, (
'The height and width of inputs should be at least 64, '
f'but got {h} and {w}.')
# check whether the input is an extended sequence
self.check_if_mirror_extended(lrs)
# compute optical flow
flows_forward, flows_backward = self.compute_flow(lrs)
# backward-time propagation
outputs = []
feat_prop = lrs.new_zeros(n, self.mid_channels, h, w)
for i in range(t - 1, -1, -1):
if i < t - 1: # no warping required for the last timestep
flow = flows_backward[:, i, :, :, :]
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
feat_prop = torch.cat([lrs[:, i, :, :, :], feat_prop], dim=1)
feat_prop = self.backward_resblocks(feat_prop)
outputs.append(feat_prop)
outputs = outputs[::-1]
# forward-time propagation and upsampling
feat_prop = torch.zeros_like(feat_prop)
for i in range(0, t):
lr_curr = lrs[:, i, :, :, :]
if i > 0: # no warping required for the first timestep
if flows_forward is not None:
flow = flows_forward[:, i - 1, :, :, :]
else:
flow = flows_backward[:, -i, :, :, :]
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
feat_prop = torch.cat([lr_curr, feat_prop], dim=1)
feat_prop = self.forward_resblocks(feat_prop)
# upsampling given the backward and forward features
out = torch.cat([outputs[i], feat_prop], dim=1)
out = self.lrelu(self.fusion(out))
out = self.lrelu(self.upsample1(out))
out = self.lrelu(self.upsample2(out))
out = self.lrelu(self.conv_hr(out))
out = self.conv_last(out)
base = self.img_upsample(lr_curr)
out += base
outputs[i] = out
return torch.stack(outputs, dim=1)
def init_weights(self, pretrained=None, strict=True):
"""Init weights for models.
Args:
pretrained (str, optional): Path for pretrained weights. If given
None, pretrained weights will not be loaded. Defaults: None.
strict (boo, optional): Whether strictly load the pretrained model.
Defaults to True.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=strict, logger=logger)
elif pretrained is not None:
raise TypeError(f'"pretrained" must be a str or None. '
f'But received {type(pretrained)}.')
class ResidualBlocksWithInputConv(nn.Module):
"""Residual blocks with a convolution in front.
Args:
in_channels (int): Number of input channels of the first conv.
out_channels (int): Number of channels of the residual blocks.
Default: 64.
num_blocks (int): Number of residual blocks. Default: 30.
"""
def __init__(self, in_channels, out_channels=64, num_blocks=30):
super().__init__()
main = []
# a convolution used to match the channels of the residual blocks
main.append(nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=True))
main.append(nn.LeakyReLU(negative_slope=0.1, inplace=True))
# residual blocks
main.append(
make_layer(
ResidualBlockNoBN, num_blocks, mid_channels=out_channels))
self.main = nn.Sequential(*main)
def forward(self, feat):
"""Forward function for ResidualBlocksWithInputConv.
Args:
feat (Tensor): Input feature with shape (n, in_channels, h, w)
Returns:
Tensor: Output feature with shape (n, out_channels, h, w)
"""
return self.main(feat)
class SPyNet(nn.Module):
"""SPyNet network structure.
The difference to the SPyNet in [tof.py] is that
1. more SPyNetBasicModule is used in this version, and
2. no batch normalization is used in this version.
Paper:
Optical Flow Estimation using a Spatial Pyramid Network, CVPR, 2017
Args:
pretrained (str): path for pre-trained SPyNet. Default: None.
"""
def __init__(self, pretrained):
super().__init__()
self.basic_module = nn.ModuleList(
[SPyNetBasicModule() for _ in range(6)])
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=True, logger=logger)
elif pretrained is not None:
raise TypeError('[pretrained] should be str or None, '
f'but got {type(pretrained)}.')
self.register_buffer(
'mean',
torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer(
'std',
torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def compute_flow(self, ref, supp):
"""Compute flow from ref to supp.
Note that in this function, the images are already resized to a
multiple of 32.
Args:
ref (Tensor): Reference image with shape of (n, 3, h, w).
supp (Tensor): Supporting image with shape of (n, 3, h, w).
Returns:
Tensor: Estimated optical flow: (n, 2, h, w).
"""
n, _, h, w = ref.size()
# normalize the input images
ref = [(ref - self.mean) / self.std]
supp = [(supp - self.mean) / self.std]
# generate downsampled frames
for level in range(5):
ref.append(
F.avg_pool2d(
input=ref[-1],
kernel_size=2,
stride=2,
count_include_pad=False))
supp.append(
F.avg_pool2d(
input=supp[-1],
kernel_size=2,
stride=2,
count_include_pad=False))
ref = ref[::-1]
supp = supp[::-1]
# flow computation
flow = ref[0].new_zeros(n, 2, h // 32, w // 32)
for level in range(len(ref)):
if level == 0:
flow_up = flow
else:
flow_up = F.interpolate(
input=flow,
scale_factor=2,
mode='bilinear',
align_corners=True) * 2.0
# add the residue to the upsampled flow
flow = flow_up + self.basic_module[level](
torch.cat([
ref[level],
flow_warp(
supp[level],
flow_up.permute(0, 2, 3, 1),
padding_mode='border'), flow_up
], 1))
return flow
def forward(self, ref, supp):
"""Forward function of SPyNet.
This function computes the optical flow from ref to supp.
Args:
ref (Tensor): Reference image with shape of (n, 3, h, w).
supp (Tensor): Supporting image with shape of (n, 3, h, w).
Returns:
Tensor: Estimated optical flow: (n, 2, h, w).
"""
# upsize to a multiple of 32
h, w = ref.shape[2:4]
w_up = w if (w % 32) == 0 else 32 * (w // 32 + 1)
h_up = h if (h % 32) == 0 else 32 * (h // 32 + 1)
ref = F.interpolate(
input=ref, size=(h_up, w_up), mode='bilinear', align_corners=False)
supp = F.interpolate(
input=supp,
size=(h_up, w_up),
mode='bilinear',
align_corners=False)
# compute flow, and resize back to the original resolution
flow = F.interpolate(
input=self.compute_flow(ref, supp),
size=(h, w),
mode='bilinear',
align_corners=False)
# adjust the flow values
flow[:, 0, :, :] *= float(w) / float(w_up)
flow[:, 1, :, :] *= float(h) / float(h_up)
return flow
class SPyNetBasicModule(nn.Module):
"""Basic Module for SPyNet.
Paper:
Optical Flow Estimation using a Spatial Pyramid Network, CVPR, 2017
"""
def __init__(self):
super().__init__()
self.basic_module = nn.Sequential(
ConvModule(
in_channels=8,
out_channels=32,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(
in_channels=32,
out_channels=64,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(
in_channels=64,
out_channels=32,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(
in_channels=32,
out_channels=16,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(
in_channels=16,
out_channels=2,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=None))
def forward(self, tensor_input):
"""
Args:
tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
8 channels contain:
[reference image (3), neighbor image (3), initial flow (2)].
Returns:
Tensor: Refined flow with shape (b, 2, h, w)
"""
return self.basic_module(tensor_input)