-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
eval_hooks.py
128 lines (108 loc) · 4.64 KB
/
eval_hooks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
import torch.distributed as dist
from mmcv.runner import DistEvalHook as _DistEvalHook
from mmcv.runner import EvalHook as _EvalHook
from torch.nn.modules.batchnorm import _BatchNorm
class EvalHook(_EvalHook):
"""Single GPU EvalHook, with efficient test support.
Args:
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
If set to True, it will perform by epoch. Otherwise, by iteration.
Default: False.
efficient_test (bool): Whether save the results as local numpy files to
save CPU memory during evaluation. Default: False.
pre_eval (bool): Whether to use progressive mode to evaluate model.
Default: False.
Returns:
list: The prediction results.
"""
greater_keys = ['mIoU', 'mAcc', 'aAcc']
def __init__(self,
*args,
by_epoch=False,
efficient_test=False,
pre_eval=False,
**kwargs):
super().__init__(*args, by_epoch=by_epoch, **kwargs)
self.pre_eval = pre_eval
if efficient_test:
warnings.warn(
'DeprecationWarning: ``efficient_test`` for evaluation hook '
'is deprecated, the evaluation hook is CPU memory friendly '
'with ``pre_eval=True`` as argument for ``single_gpu_test()`` '
'function')
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
if not self._should_evaluate(runner):
return
from mmseg.apis import single_gpu_test
results = single_gpu_test(
runner.model, self.dataloader, show=False, pre_eval=self.pre_eval)
runner.log_buffer.clear()
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
key_score = self.evaluate(runner, results)
if self.save_best:
self._save_ckpt(runner, key_score)
class DistEvalHook(_DistEvalHook):
"""Distributed EvalHook, with efficient test support.
Args:
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
If set to True, it will perform by epoch. Otherwise, by iteration.
Default: False.
efficient_test (bool): Whether save the results as local numpy files to
save CPU memory during evaluation. Default: False.
pre_eval (bool): Whether to use progressive mode to evaluate model.
Default: False.
Returns:
list: The prediction results.
"""
greater_keys = ['mIoU', 'mAcc', 'aAcc']
def __init__(self,
*args,
by_epoch=False,
efficient_test=False,
pre_eval=False,
**kwargs):
super().__init__(*args, by_epoch=by_epoch, **kwargs)
self.pre_eval = pre_eval
if efficient_test:
warnings.warn(
'DeprecationWarning: ``efficient_test`` for evaluation hook '
'is deprecated, the evaluation hook is CPU memory friendly '
'with ``pre_eval=True`` as argument for ``multi_gpu_test()`` '
'function')
def _do_evaluate(self, runner):
"""perform evaluation and save ckpt."""
# Synchronization of BatchNorm's buffer (running_mean
# and running_var) is not supported in the DDP of pytorch,
# which may cause the inconsistent performance of models in
# different ranks, so we broadcast BatchNorm's buffers
# of rank 0 to other ranks to avoid this.
if self.broadcast_bn_buffer:
model = runner.model
for name, module in model.named_modules():
if isinstance(module,
_BatchNorm) and module.track_running_stats:
dist.broadcast(module.running_var, 0)
dist.broadcast(module.running_mean, 0)
if not self._should_evaluate(runner):
return
tmpdir = self.tmpdir
if tmpdir is None:
tmpdir = osp.join(runner.work_dir, '.eval_hook')
from mmseg.apis import multi_gpu_test
results = multi_gpu_test(
runner.model,
self.dataloader,
tmpdir=tmpdir,
gpu_collect=self.gpu_collect,
pre_eval=self.pre_eval)
runner.log_buffer.clear()
if runner.rank == 0:
print('\n')
runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
key_score = self.evaluate(runner, results)
if self.save_best:
self._save_ckpt(runner, key_score)