Skip to content

Commit 36c8144

Browse files
authored
update metafiles (#661)
* update metafiles * update metafiles
1 parent 170a9d1 commit 36c8144

File tree

28 files changed

+2304
-384
lines changed

28 files changed

+2304
-384
lines changed

configs/ann/metafile.yml

+96-16
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,12 @@ Models:
1111
- Name: ann_r50-d8_512x1024_40k_cityscapes
1212
In Collection: ANN
1313
Metadata:
14-
inference time (ms/im): 269.54
14+
inference time (ms/im):
15+
- value: 269.54
16+
hardware: V100
17+
backend: PyTorch
18+
batch size: 1
19+
mode: FP32
1520
Results:
1621
- Task: Semantic Segmentation
1722
Dataset: Cityscapes
@@ -25,7 +30,12 @@ Models:
2530
- Name: ann_r101-d8_512x1024_40k_cityscapes
2631
In Collection: ANN
2732
Metadata:
28-
inference time (ms/im): 392.16
33+
inference time (ms/im):
34+
- value: 392.16
35+
hardware: V100
36+
backend: PyTorch
37+
batch size: 1
38+
mode: FP32
2939
Results:
3040
- Task: Semantic Segmentation
3141
Dataset: Cityscapes
@@ -39,7 +49,12 @@ Models:
3949
- Name: ann_r50-d8_769x769_40k_cityscapes
4050
In Collection: ANN
4151
Metadata:
42-
inference time (ms/im): 588.24
52+
inference time (ms/im):
53+
- value: 588.24
54+
hardware: V100
55+
backend: PyTorch
56+
batch size: 1
57+
mode: FP32
4358
Results:
4459
- Task: Semantic Segmentation
4560
Dataset: Cityscapes
@@ -53,7 +68,12 @@ Models:
5368
- Name: ann_r101-d8_769x769_40k_cityscapes
5469
In Collection: ANN
5570
Metadata:
56-
inference time (ms/im): 869.57
71+
inference time (ms/im):
72+
- value: 869.57
73+
hardware: V100
74+
backend: PyTorch
75+
batch size: 1
76+
mode: FP32
5777
Results:
5878
- Task: Semantic Segmentation
5979
Dataset: Cityscapes
@@ -67,7 +87,12 @@ Models:
6787
- Name: ann_r50-d8_512x1024_80k_cityscapes
6888
In Collection: ANN
6989
Metadata:
70-
inference time (ms/im): 269.54
90+
inference time (ms/im):
91+
- value: 269.54
92+
hardware: V100
93+
backend: PyTorch
94+
batch size: 1
95+
mode: FP32
7196
Results:
7297
- Task: Semantic Segmentation
7398
Dataset: Cityscapes
@@ -81,7 +106,12 @@ Models:
81106
- Name: ann_r101-d8_512x1024_80k_cityscapes
82107
In Collection: ANN
83108
Metadata:
84-
inference time (ms/im): 392.16
109+
inference time (ms/im):
110+
- value: 392.16
111+
hardware: V100
112+
backend: PyTorch
113+
batch size: 1
114+
mode: FP32
85115
Results:
86116
- Task: Semantic Segmentation
87117
Dataset: Cityscapes
@@ -95,7 +125,12 @@ Models:
95125
- Name: ann_r50-d8_769x769_80k_cityscapes
96126
In Collection: ANN
97127
Metadata:
98-
inference time (ms/im): 588.24
128+
inference time (ms/im):
129+
- value: 588.24
130+
hardware: V100
131+
backend: PyTorch
132+
batch size: 1
133+
mode: FP32
99134
Results:
100135
- Task: Semantic Segmentation
101136
Dataset: Cityscapes
@@ -109,7 +144,12 @@ Models:
109144
- Name: ann_r101-d8_769x769_80k_cityscapes
110145
In Collection: ANN
111146
Metadata:
112-
inference time (ms/im): 869.57
147+
inference time (ms/im):
148+
- value: 869.57
149+
hardware: V100
150+
backend: PyTorch
151+
batch size: 1
152+
mode: FP32
113153
Results:
114154
- Task: Semantic Segmentation
115155
Dataset: Cityscapes
@@ -123,7 +163,12 @@ Models:
123163
- Name: ann_r50-d8_512x512_80k_ade20k
124164
In Collection: ANN
125165
Metadata:
126-
inference time (ms/im): 47.6
166+
inference time (ms/im):
167+
- value: 47.6
168+
hardware: V100
169+
backend: PyTorch
170+
batch size: 1
171+
mode: FP32
127172
Results:
128173
- Task: Semantic Segmentation
129174
Dataset: ADE20K
@@ -137,7 +182,12 @@ Models:
137182
- Name: ann_r101-d8_512x512_80k_ade20k
138183
In Collection: ANN
139184
Metadata:
140-
inference time (ms/im): 70.82
185+
inference time (ms/im):
186+
- value: 70.82
187+
hardware: V100
188+
backend: PyTorch
189+
batch size: 1
190+
mode: FP32
141191
Results:
142192
- Task: Semantic Segmentation
143193
Dataset: ADE20K
@@ -151,7 +201,12 @@ Models:
151201
- Name: ann_r50-d8_512x512_160k_ade20k
152202
In Collection: ANN
153203
Metadata:
154-
inference time (ms/im): 47.6
204+
inference time (ms/im):
205+
- value: 47.6
206+
hardware: V100
207+
backend: PyTorch
208+
batch size: 1
209+
mode: FP32
155210
Results:
156211
- Task: Semantic Segmentation
157212
Dataset: ADE20K
@@ -165,7 +220,12 @@ Models:
165220
- Name: ann_r101-d8_512x512_160k_ade20k
166221
In Collection: ANN
167222
Metadata:
168-
inference time (ms/im): 70.82
223+
inference time (ms/im):
224+
- value: 70.82
225+
hardware: V100
226+
backend: PyTorch
227+
batch size: 1
228+
mode: FP32
169229
Results:
170230
- Task: Semantic Segmentation
171231
Dataset: ADE20K
@@ -179,7 +239,12 @@ Models:
179239
- Name: ann_r50-d8_512x512_20k_voc12aug
180240
In Collection: ANN
181241
Metadata:
182-
inference time (ms/im): 47.8
242+
inference time (ms/im):
243+
- value: 47.8
244+
hardware: V100
245+
backend: PyTorch
246+
batch size: 1
247+
mode: FP32
183248
Results:
184249
- Task: Semantic Segmentation
185250
Dataset: Pascal VOC 2012 + Aug
@@ -193,7 +258,12 @@ Models:
193258
- Name: ann_r101-d8_512x512_20k_voc12aug
194259
In Collection: ANN
195260
Metadata:
196-
inference time (ms/im): 71.74
261+
inference time (ms/im):
262+
- value: 71.74
263+
hardware: V100
264+
backend: PyTorch
265+
batch size: 1
266+
mode: FP32
197267
Results:
198268
- Task: Semantic Segmentation
199269
Dataset: Pascal VOC 2012 + Aug
@@ -207,7 +277,12 @@ Models:
207277
- Name: ann_r50-d8_512x512_40k_voc12aug
208278
In Collection: ANN
209279
Metadata:
210-
inference time (ms/im): 47.8
280+
inference time (ms/im):
281+
- value: 47.8
282+
hardware: V100
283+
backend: PyTorch
284+
batch size: 1
285+
mode: FP32
211286
Results:
212287
- Task: Semantic Segmentation
213288
Dataset: Pascal VOC 2012 + Aug
@@ -221,7 +296,12 @@ Models:
221296
- Name: ann_r101-d8_512x512_40k_voc12aug
222297
In Collection: ANN
223298
Metadata:
224-
inference time (ms/im): 71.74
299+
inference time (ms/im):
300+
- value: 71.74
301+
hardware: V100
302+
backend: PyTorch
303+
batch size: 1
304+
mode: FP32
225305
Results:
226306
- Task: Semantic Segmentation
227307
Dataset: Pascal VOC 2012 + Aug

configs/apcnet/metafile.yml

+72-12
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,12 @@ Models:
1010
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
1111
In Collection: APCNet
1212
Metadata:
13-
inference time (ms/im): 280.11
13+
inference time (ms/im):
14+
- value: 280.11
15+
hardware: V100
16+
backend: PyTorch
17+
batch size: 1
18+
mode: FP32
1419
Results:
1520
- Task: Semantic Segmentation
1621
Dataset: Cityscapes
@@ -24,7 +29,12 @@ Models:
2429
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
2530
In Collection: APCNet
2631
Metadata:
27-
inference time (ms/im): 465.12
32+
inference time (ms/im):
33+
- value: 465.12
34+
hardware: V100
35+
backend: PyTorch
36+
batch size: 1
37+
mode: FP32
2838
Results:
2939
- Task: Semantic Segmentation
3040
Dataset: Cityscapes
@@ -38,7 +48,12 @@ Models:
3848
- Name: apcnet_r50-d8_769x769_40k_cityscapes
3949
In Collection: APCNet
4050
Metadata:
41-
inference time (ms/im): 657.89
51+
inference time (ms/im):
52+
- value: 657.89
53+
hardware: V100
54+
backend: PyTorch
55+
batch size: 1
56+
mode: FP32
4257
Results:
4358
- Task: Semantic Segmentation
4459
Dataset: Cityscapes
@@ -52,7 +67,12 @@ Models:
5267
- Name: apcnet_r101-d8_769x769_40k_cityscapes
5368
In Collection: APCNet
5469
Metadata:
55-
inference time (ms/im): 970.87
70+
inference time (ms/im):
71+
- value: 970.87
72+
hardware: V100
73+
backend: PyTorch
74+
batch size: 1
75+
mode: FP32
5676
Results:
5777
- Task: Semantic Segmentation
5878
Dataset: Cityscapes
@@ -66,7 +86,12 @@ Models:
6686
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
6787
In Collection: APCNet
6888
Metadata:
69-
inference time (ms/im): 280.11
89+
inference time (ms/im):
90+
- value: 280.11
91+
hardware: V100
92+
backend: PyTorch
93+
batch size: 1
94+
mode: FP32
7095
Results:
7196
- Task: Semantic Segmentation
7297
Dataset: Cityscapes
@@ -80,7 +105,12 @@ Models:
80105
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
81106
In Collection: APCNet
82107
Metadata:
83-
inference time (ms/im): 465.12
108+
inference time (ms/im):
109+
- value: 465.12
110+
hardware: V100
111+
backend: PyTorch
112+
batch size: 1
113+
mode: FP32
84114
Results:
85115
- Task: Semantic Segmentation
86116
Dataset: Cityscapes
@@ -94,7 +124,12 @@ Models:
94124
- Name: apcnet_r50-d8_769x769_80k_cityscapes
95125
In Collection: APCNet
96126
Metadata:
97-
inference time (ms/im): 657.89
127+
inference time (ms/im):
128+
- value: 657.89
129+
hardware: V100
130+
backend: PyTorch
131+
batch size: 1
132+
mode: FP32
98133
Results:
99134
- Task: Semantic Segmentation
100135
Dataset: Cityscapes
@@ -108,7 +143,12 @@ Models:
108143
- Name: apcnet_r101-d8_769x769_80k_cityscapes
109144
In Collection: APCNet
110145
Metadata:
111-
inference time (ms/im): 970.87
146+
inference time (ms/im):
147+
- value: 970.87
148+
hardware: V100
149+
backend: PyTorch
150+
batch size: 1
151+
mode: FP32
112152
Results:
113153
- Task: Semantic Segmentation
114154
Dataset: Cityscapes
@@ -122,7 +162,12 @@ Models:
122162
- Name: apcnet_r50-d8_512x512_80k_ade20k
123163
In Collection: APCNet
124164
Metadata:
125-
inference time (ms/im): 50.99
165+
inference time (ms/im):
166+
- value: 50.99
167+
hardware: V100
168+
backend: PyTorch
169+
batch size: 1
170+
mode: FP32
126171
Results:
127172
- Task: Semantic Segmentation
128173
Dataset: ADE20K
@@ -136,7 +181,12 @@ Models:
136181
- Name: apcnet_r101-d8_512x512_80k_ade20k
137182
In Collection: APCNet
138183
Metadata:
139-
inference time (ms/im): 76.34
184+
inference time (ms/im):
185+
- value: 76.34
186+
hardware: V100
187+
backend: PyTorch
188+
batch size: 1
189+
mode: FP32
140190
Results:
141191
- Task: Semantic Segmentation
142192
Dataset: ADE20K
@@ -150,7 +200,12 @@ Models:
150200
- Name: apcnet_r50-d8_512x512_160k_ade20k
151201
In Collection: APCNet
152202
Metadata:
153-
inference time (ms/im): 50.99
203+
inference time (ms/im):
204+
- value: 50.99
205+
hardware: V100
206+
backend: PyTorch
207+
batch size: 1
208+
mode: FP32
154209
Results:
155210
- Task: Semantic Segmentation
156211
Dataset: ADE20K
@@ -164,7 +219,12 @@ Models:
164219
- Name: apcnet_r101-d8_512x512_160k_ade20k
165220
In Collection: APCNet
166221
Metadata:
167-
inference time (ms/im): 76.34
222+
inference time (ms/im):
223+
- value: 76.34
224+
hardware: V100
225+
backend: PyTorch
226+
batch size: 1
227+
mode: FP32
168228
Results:
169229
- Task: Semantic Segmentation
170230
Dataset: ADE20K

0 commit comments

Comments
 (0)