|
| 1 | +Collections: |
| 2 | +- Name: bisenetv1 |
| 3 | + Metadata: |
| 4 | + Training Data: |
| 5 | + - Cityscapes |
| 6 | + Paper: |
| 7 | + URL: https://arxiv.org/abs/1808.00897 |
| 8 | + Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation' |
| 9 | + README: configs/bisenetv1/README.md |
| 10 | + Code: |
| 11 | + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266 |
| 12 | + Version: v0.18.0 |
| 13 | + Converted From: |
| 14 | + Code: https://github.com/ycszen/TorchSeg/tree/master/model/bisenet |
| 15 | +Models: |
| 16 | +- Name: bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes |
| 17 | + In Collection: bisenetv1 |
| 18 | + Metadata: |
| 19 | + backbone: R-18-D32 |
| 20 | + crop size: (1024,1024) |
| 21 | + lr schd: 160000 |
| 22 | + inference time (ms/im): |
| 23 | + - value: 31.48 |
| 24 | + hardware: V100 |
| 25 | + backend: PyTorch |
| 26 | + batch size: 1 |
| 27 | + mode: FP32 |
| 28 | + resolution: (1024,1024) |
| 29 | + memory (GB): 5.69 |
| 30 | + Results: |
| 31 | + - Task: Semantic Segmentation |
| 32 | + Dataset: Cityscapes |
| 33 | + Metrics: |
| 34 | + mIoU: 74.44 |
| 35 | + mIoU(ms+flip): 77.05 |
| 36 | + Config: configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py |
| 37 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth |
| 38 | +- Name: bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes |
| 39 | + In Collection: bisenetv1 |
| 40 | + Metadata: |
| 41 | + backbone: R-18-D32 |
| 42 | + crop size: (1024,1024) |
| 43 | + lr schd: 160000 |
| 44 | + inference time (ms/im): |
| 45 | + - value: 31.48 |
| 46 | + hardware: V100 |
| 47 | + backend: PyTorch |
| 48 | + batch size: 1 |
| 49 | + mode: FP32 |
| 50 | + resolution: (1024,1024) |
| 51 | + memory (GB): 5.69 |
| 52 | + Results: |
| 53 | + - Task: Semantic Segmentation |
| 54 | + Dataset: Cityscapes |
| 55 | + Metrics: |
| 56 | + mIoU: 74.37 |
| 57 | + mIoU(ms+flip): 76.91 |
| 58 | + Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py |
| 59 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth |
| 60 | +- Name: bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes |
| 61 | + In Collection: bisenetv1 |
| 62 | + Metadata: |
| 63 | + backbone: R-18-D32 |
| 64 | + crop size: (1024,1024) |
| 65 | + lr schd: 160000 |
| 66 | + inference time (ms/im): |
| 67 | + - value: 31.48 |
| 68 | + hardware: V100 |
| 69 | + backend: PyTorch |
| 70 | + batch size: 1 |
| 71 | + mode: FP32 |
| 72 | + resolution: (1024,1024) |
| 73 | + memory (GB): 11.17 |
| 74 | + Results: |
| 75 | + - Task: Semantic Segmentation |
| 76 | + Dataset: Cityscapes |
| 77 | + Metrics: |
| 78 | + mIoU: 75.16 |
| 79 | + mIoU(ms+flip): 77.24 |
| 80 | + Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py |
| 81 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth |
| 82 | +- Name: bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes |
| 83 | + In Collection: bisenetv1 |
| 84 | + Metadata: |
| 85 | + backbone: R-50-D32 |
| 86 | + crop size: (1024,1024) |
| 87 | + lr schd: 160000 |
| 88 | + inference time (ms/im): |
| 89 | + - value: 129.7 |
| 90 | + hardware: V100 |
| 91 | + backend: PyTorch |
| 92 | + batch size: 1 |
| 93 | + mode: FP32 |
| 94 | + resolution: (1024,1024) |
| 95 | + memory (GB): 3.3 |
| 96 | + Results: |
| 97 | + - Task: Semantic Segmentation |
| 98 | + Dataset: Cityscapes |
| 99 | + Metrics: |
| 100 | + mIoU: 76.92 |
| 101 | + mIoU(ms+flip): 78.87 |
| 102 | + Config: configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py |
| 103 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth |
| 104 | +- Name: bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes |
| 105 | + In Collection: bisenetv1 |
| 106 | + Metadata: |
| 107 | + backbone: R-50-D32 |
| 108 | + crop size: (1024,1024) |
| 109 | + lr schd: 160000 |
| 110 | + inference time (ms/im): |
| 111 | + - value: 129.7 |
| 112 | + hardware: V100 |
| 113 | + backend: PyTorch |
| 114 | + batch size: 1 |
| 115 | + mode: FP32 |
| 116 | + resolution: (1024,1024) |
| 117 | + memory (GB): 15.39 |
| 118 | + Results: |
| 119 | + - Task: Semantic Segmentation |
| 120 | + Dataset: Cityscapes |
| 121 | + Metrics: |
| 122 | + mIoU: 77.68 |
| 123 | + mIoU(ms+flip): 79.57 |
| 124 | + Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py |
| 125 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth |
0 commit comments