-
Notifications
You must be signed in to change notification settings - Fork 597
/
Copy pathmixformer_cvt_500e_got10k.py
93 lines (89 loc) · 2.5 KB
/
mixformer_cvt_500e_got10k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
cudnn_benchmark = False
deterministic = True
seed = 1
# model setting
model = dict(
type='MixFormer',
backbone=dict(
type='ConvVisionTransformer',
num_stages=3,
patch_size=[7, 3, 3],
patch_stride=[4, 2, 2],
patch_padding=[2, 1, 1],
dim_embed=[64, 192, 384],
num_heads=[1, 3, 6],
depth=[1, 4, 16],
mlp_channel_ratio=[4, 4, 4],
attn_drop_rate=[0.0, 0.0, 0.0],
drop_rate=[0.0, 0.0, 0.0],
path_drop_probs=[0.0, 0.0, 0.1],
qkv_bias=[True, True, True],
qkv_proj_method=['dw_bn', 'dw_bn', 'dw_bn'],
kernel_qkv=[3, 3, 3],
padding_kv=[1, 1, 1],
stride_kv=[2, 2, 2],
padding_q=[1, 1, 1],
stride_q=[1, 1, 1],
norm_cfg=dict(type='BN', requires_grad=False)),
head=dict(
type='MixFormerHead',
bbox_head=dict(
type='CornerPredictorHead',
inplanes=384,
channel=384,
feat_size=20,
stride=16),
score_head=dict(
type='MixFormerScoreDecoder',
pool_size=4,
feat_size=20,
stride=16,
num_heads=6,
hidden_dim=384,
num_layers=3)),
test_cfg=dict(
search_factor=4.55,
search_size=320,
template_factor=2.0,
template_size=128,
update_interval=[25],
online_size=[2],
max_score_decay=[0.98],
))
data_root = 'data/'
img_norm_cfg = dict(mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True, with_label=False),
dict(
type='MultiScaleFlipAug',
scale_factor=1,
flip=False,
transforms=[
dict(type='Normalize', **img_norm_cfg),
dict(type='VideoCollect', keys=['img', 'gt_bboxes']),
dict(type='ImageToTensor', keys=['img'])
])
]
# dataset settings
data = dict(
samples_per_gpu=16,
workers_per_gpu=8,
persistent_workers=True,
samples_per_epoch=60000,
test=dict(
type='GOT10kDataset',
ann_file=data_root + 'got10k/annotations/got10k_test_infos.txt',
img_prefix=data_root + 'got10k',
pipeline=test_pipeline,
split='test',
test_mode=True))
# yapf:enable
# runtime settings
total_epochs = 500
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/xxx'
load_from = None
resume_from = None
workflow = [('train', 1)]